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Abstract

Reinforcement learning (RL), as a branch of artificial intelligence, is concerned with making a good

sequence of decisions given experience and rewards in a stochastic environment. RL algorithms,

propelled by the rise of deep learning and neural networks, have shown an impressive performance

in achieving human-level performance in games like Go, Chess, and Atari. However, when applied to

high-stakes real-world applications, these impressive performances are unmatched. This dissertation

tackles some important challenges around robustness that hinder our ability to unleash the potential

of RL to real-world applications. We look at the robustness of RL algorithms in both online and

offline settings and introduce new algorithms that may be of particular interest when applying RL

to real-world applications such as health care and education.

In the first line of work, we consider an online setting where the agent can interact with the

environment and collect experience and rewards to learn the optimal sequence of decisions. In many

real-world applications, online interactions are limited, limiting our ability to collect data. That

raises the necessity of sample efficient algorithms. In addition, safety concerns highlight the impor-

tance of learning risk-sensitive policies in these applications. We, therefore, combine recent advances

in distributional reinforcement learning with the principle of optimism in the face of uncertainty to

develop a scalable algorithm to learn a CVaR (conditional value at risk) optimal policy in a sample

efficient manner to minimize the number of interactions needed with the environment.

In high-stakes real-world applications, often any online interaction is undesirable and we have to

be able to perform off-policy policy evaluation (OPE). OPE methods evaluate a new policy (evalua-

tion policy) given the experiences collected using another policy (behavior policy). For example, an

agent that aims to learn the adaptive treatment plan for patients in a hospital may not be able to

collect any experiences interacting with patients but can use data containing past decisions made by

clinicians and their outcomes. OPE is a counterfactual and challenging task that is often solved by

making a crucial assumption, sequential ignorability. Sequential ignorability states that the evalua-

tion policy has access to all the information used by the behavior policy to make decisions, in other

words, there are no unobserved confounders. This assumption is often violated in observational data,

and failure to acknowledge that results in an arbitrary biased estimate of the evaluation policy. In

this dissertation, we consider the bounded effect of unobserved confounders and develop a scalable

iv



algorithm to provide bounds on OPE. Our work can be used to raise concerns or certify the superior

performance of an evaluation policy under the existence of unobserved confounders and prevents

undesirable outcomes of deploying a new decision policy.

One shortcoming of the existing OPE method for sequential decision making is that they often

evaluate the expected performance given a distribution. However, this doesn’t reveal an accurate

picture, in most real-world applications, we have to make sure every subgroup in the population

benefits from a newly suggested policy. That raises the concern of robustness in sub-population.

Given an evaluation policy that performs better than the behavior policy on average, are there

some sub-population that will worse off? In this dissertation, we take a step toward quantifying

heterogeneity in OPE for sequential decision making and identify subgroups with similar benefits or

harm from the evaluation policy. This information provides essential insight into the performance

of the evaluation policy that domain experts can use before deploying a policy.
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Chapter 1

Introduction

1.1 Motivation

Reinforcement learning (RL) is a branch of machine learning and artificial intelligence that is con-

cerned with making an optimal sequence of decisions under uncertainty. The general framework of

RL consists of an environment and an agent that interacts with the environment. At every step,

the agent observes a state, takes an action, and receives a reward. The goal is to find an optimal

sequence of actions to perform a specific task.

This framework applies to many real-world applications. For example, playing games such as

Chess [Silver et al., 2018], Go [Silver et al., 2017] and Atari [Mnih et al., 2013] can be formulated

as a reinforcement learning problem where the agent’s goal is to win the game by taking actions

with respect to the rule of the game. The application of RL goes beyond games, for example in

health care one can use RL agents to learn an adaptive optimal treatment plan for septic patients in

ICU [Komorowski et al., 2018] or find the optimal STI (structured treatment interruption) strategies

for HIV patients [Ernst et al., 2006]. In education, RL agents can be used to adaptively sequence

material to best keep a student engaged [Mandel et al., 2014]. RL framework can also be used to

personalize recommendation systems [Li et al., 2010] and generate dialogues for interactive dialogue

systems such as chatbots [Li et al., 2016].

In designing algorithms for reinforcement learning, we need to overcome four main challenges:

optimization, exploration, generalization, and delayed feedback.

Optimization: Optimization means that we want the RL agent to find the optimal sequence of

actions with respect to some pre-defined objective function. This objective function is often being

defined as a risk-neutral expected value of the sum of discounted rewards. Optimization usually

involves searching over the policy space, where a policy is defined as a mapping between states and

distribution over actions.

Exploration: In reinforcement learning, the agent will only observe a scalar value reward feedback

1



1.1. MOTIVATION 2

for the chosen action and no feedback for other actions. Hence, the agent needs to explore different

actions to find the optimal action. This is in contrast with supervised learning where the training

data indicates the true label of the observation.

Generalization: Often it is impossible to observe all the possible states in an environment. There-

fore, we expect that the RL agent acts well in unseen states and can generalize from past experiences.

This generalization from observed data is often achieved by the use of function approximation such

as neural networks.

Delayed feedback: Another unique challenge to reinforcement learning is that the effect of an

action may not be reflected in the immediate reward feedback received by the agent. For example,

a patient that undergoes surgery will receive the reward of better health in the future and not in

the immediate aftermath of the surgery. This challenge makes the application of myopic algorithms

(algorithms that only look at the immediate reward to optimize the long-term sum of rewards)

sub-optimal.

Despite these challenges, there has been an impressive empirical success using reinforcement

learning algorithms, mostly propelled by the use of neural networks for function approximation.

Examples include, super-human performance in Atari [Mnih et al., 2013], human-level performance

in the game of Go, Chess, Shogi [Silver et al., 2018] and beating the professional players in Start Craft

II [Vinyals et al., 2019]. However; when looking at the results of RL algorithms on other applications

besides playing a game, although impressive, these performances are unmatched [Gottesman et al.,

2019a]. Common property in games that enjoyed these impressive performances of RL is access to

a perfect simulator. That enables RL algorithms to collect large amounts of data to combat the

challenges mentioned earlier. However, when applying RL to high-stakes real-world applications like

health care and education, such a high fidelity simulator does not exist. Additionally, the availability

of interactions and safety concerns hinder our ability to collect the same amount of data in those

settings. For example, for an agent that tries to learn an adaptive treatment plan for patients, the

agent has limited access to interaction with patients, additionally, it is crucial to avoid catastrophic

outcomes in this setting.

To unlock the potential of reinforcement learning for high-stake applications such as health care

and education we need to think about the robustness of algorithms and the ability to learn from

limited interaction or historical data. In an online setting where the agent is allowed to interact with

the environment, it is important to optimize a risk-sensitive policy rather than a risk-neutral policy

to minimize the chances of the severe outcome as well as minimizing the number of interactions

needed to learn those policies. In an offline setting, the agent is not allowed to interact with the

environment and has to use historically collected data to suggest a policy better than common

practice. In this setting, a thorough examination of the suggested policy to satisfy the safety criteria

that ensure robustness is of prime importance.
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1.2 Robust Policy Learning and Evaluation

The goal of this dissertation is to tackle some of the important challenges around robustness of

reinforcement learning algorithms in both online and offline settings to make it more applicable

to high-stakes real-world applications and unleash the power of reinforcement learning framework.

Throughout this dissertation we consider episodic reinforcement learning where the agent acts in

episodes and takes action until the end of the episode and starts again. In an online setting, the

agent interacts with the environment and collects samples of states, actions, and rewards in every

episode and tries to improve its performance. On the other hand, in an offline setting, data is already

collected using other agents such as other automated agents or humans acting in the environment

and the goal is to use the historical data to learn a better decision policy or evaluate a new decision

policy.

In an online setting, the agent can interact with the environment, while learning in high-stakes

applications such as health care, the agent has to avoid severe outcomes as a consequence of its

action. Hence, the consideration of risk-sensitive objective in contrast to risk-neutral objective is

of prime importance. Previous works have considered altering the reward function to account for

severe outcomes [Mihatsch and Neuneier, 2002], or optimization of risk measures such VaR (Value

at Risk) and CVaR (Conditional Value at Risk) [Chow et al., 2015, 2017] as an alternative. Two

main approaches can be taken, first, optimizing a risk-sensitive objective, second optimizing a risk-

neutral objective subject to a risk constraint [Chow, 2017]. In either case, an important factor that

is often overlooked is the sample efficiency of these algorithms. Learning a safe policy fast is of

prime importance when dealing with real-world applications, as the number of feasible interactions

is often limited.

Most of the past literature in risk-sensitive RL often suffers from two main shortcomings. First,

they are not scalable to large state spaces while using neural networks as function approximators.

Second, they do not offer a strategic exploration scheme for sample efficient learning. In this dis-

sertation, we combine the principle of optimism in the face of uncertainty (OFU) [Brafman and

Tennenholtz, 2002] and recent advances in distributional reinforcement learning (DRL) [Dabney

et al., 2018, Bellemare et al., 2017] to develop a sample efficient scalable algorithm for learning a

risk-sensitive policy. This is in contrast with safe policy learning, where we focus on avoiding sever

outcomes while learning and can be a great avenue of future research to combine safe learning and

fast learning of a safe policy.

In an offline setting, we are given a set of historical data, collected by a different policy that we

call a behavior policy. The goal is to evaluate a new decision policy, evaluation policy, using the

historical data, we call this task off-policy policy evaluation (OPE). OPE is inherently a counterfac-

tual and challenging problem where we ask the question of “what if the evaluation policy were used

instead of the behavior policy”. A common method for OPE is importance sampling that reweights

the historical data based on their likelihood under the evaluation policy and the behaviour policy
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[Mahmood et al., 2014]. Other common methods are model-based methods that learn a model of

the world based on the historical data and evaluates the policy given the learned model, and doubly-

robust methods that use the model-based estimate to reduce the variance of importance sampling

estimate [Jiang and Li, 2015].

There are some key challenges in applying off-policy policy evaluation to real-world applications;

confounding factors, heterogeneity, and overlap Gottesman et al. [2019a].

Confounding factors: Does the RL agent have access to all the variables being used by the

behavior policy to make the decision? For example, consider the clinician’s decision to administer

antibiotics to septic patients upon admission to the ICU. Clinicians may decide whether a patient is

healthier based on unrecorded comorbidities or unrecorded conversations with the patient. It is more

probable that healthier patients receive a lower dose of antibiotics and they are more likely to show

better outcomes. Without access to all the information that the clinician used to make the decision,

we may correlate a lower dose of antibiotics to a better outcome that is an estimate confounded

by spurious correlation. Failure to consider the effect of unobserved confounding variables may

result in drastic errors in evaluating a new decision policy. Developing an algorithm to measure

the robustness of the evaluation process to unobserved confounders is of prime importance before

deploying any decision policy in high-stakes applications such as health care.

In one-time step, non-sequential settings there have been recent works on bounding the value

of the treatment effect in observational studies under the assumption of a bounded effect of the

unobserved confounder. [Yadlowsky et al., 2018, Rosenbaum, 2014]. Unfortunately there hasn’t

been enough literature in sequential settings and these methods are not readily applicable to longer

horizons. Zhang and Bareinboim [2019] for example derived partial identification bounds on policy

performance with limited restrictions on the influence of the unobserved confounder. However, these

bounds are too conservative and not scalable to large state spaces. In this dissertation, we take a step

toward developing tighter bounds on the evaluation policy in sequential decision-making settings.

This bound can be efficiently computed and is scalable to larger state space with the use of function

approximators such as neural networks.

Heterogeneity: Does the evaluation policy treat everyone the same? We may estimate that an

evaluation policy is better than the behavior policy on average; however, that does not necessarily

mean that it is better for everyone. That raises a concern when deploying the evaluation policy

in high-stakes application. For example, if the historical data is skewed toward one gender, we

may evaluate the evaluation policy to be better than the behavior policy but it may be worse

for the underrepresented gender group. This raises a concern about the heterogeneous effect of the

evaluation policy. Do we know subgroups of the population that will benefit or suffer from deploying

the evaluation policy? In larger state spaces with multiple features, it is unclear how to discover

and evaluate the evaluation policy for these subgroups.

A great deal of work has been done in non-sequential settings to estimate heterogeneous treatment
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[Athey and Imbens, 2016, Athey and Wager, 2019, Xie et al., 2012]. The majority of these works use

recursive partitioning and a tree structure to uncover subgroups with similar treatment effects while

having a large feature set. These methods show impressive performance in discovering heterogeneous

treatment effects; however, due to challenges like overlap that we discuss shortly, they are not readily

applicable to longer horizons.

Overlap: To evaluate the evaluation policy, we rely on samples collected by the behavior policy

and reweights those samples based on their likelihood under these policies (importance sampling).

Intuitively, when the behavior and the evaluation policy are very different, in other words, they

induce very different distributions over the state-action space, samples of the behavior policy are

less useful to evaluate the evaluation policy. For example, consider data collected by a clinician that

never administers antibiotics in ICU to patients, it is impossible to evaluate the benefit of antibiotics

using those samples. The effective sample size is a measure of overlap which indicates the effective

number of samples we have to evaluate the evaluation policy and is inversely correlated with the

variance of our estimate. For example, if the evaluation policy and the behavior policy are close to

each other the effective sample size is higher and we can estimate the value of the evaluation policy

better. However, for many evaluation policies, small overlap and small effective sample size hinder

our ability to obtain a low variance estimate of their value.

Small overlap and high variance estimates of the value of the evaluation policy limits the use of

non-sequential setting heterogeneous treatment effect estimators such as the one mentioned earlier

for sequential settings. And the problem exacerbates as the horizon increases. In this dissertation, we

take a step towards developing an algorithm to identify subgroups and estimate the heterogeneous

treatment effect in sequential settings. We leverage a different viewpoint, and instead of asking

”what is the treatment effect for each individual”, we ask ”what are the subgroups that we can

effectively evaluate their treatment effect”. This allows us to focus on the part of the state space

that overlap is high and we can obtain a low variance estimate of subgroups.

1.3 Thesis Contributions and Outline

This dissertation addresses some of the aforementioned challenges in making reinforcement learning

more applicable to high-stakes real-world applications. At the high level, we address challenges

around the robustness of RL in both online and offline settings.

• Chapter 2 (Sample Efficient Risk Sensitive Policy Learning): This chapter covers robustness

in the online setting. We cover risk-sensitive planning along with distributional reinforcement

learning and the principle of optimism in the face of uncertainty. We further develop a novel

algorithm for efficient exploration for learning a CVaR (Conditional Value at Risk) optimal

policy. Our algorithm leverages Dvoretzky–Kiefer–Wolfowitz (DKW) concentration inequality

[Dvoretzky et al., 1956] to obtain an optimistic estimate of CVaR.
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Similarly, in K-arm bandit setting we propose a novel algorithm to learn a CVaR optimal arm.

Our method leverages DKW inequality to obtain an optimistic estimate of CVaR for each arm.

We show that our method have logarithmic regret.

• Chapter 3 (Off-Policy Policy Evaluation Under Unobserved Confounding): We discuss one

of the main assumptions of off-policy policy evaluation, sequential ignorability [Chakraborty

and Murphy, 2014]. We demonstrate practical examples where this assumption is violated,

or in other words when we have unobserved confounders. We describe the failure of common

OPE methods when sequential ignorability doesn’t hold: under no assumption OPE can be

arbitrary biased.

We introduce bounded confounding model for sequential settings, and assume confounding

happens only in one time step. We further develop a scalable algorithm to estimate bounds

on OPE under unobserved confounding. Our algorithm can be used in large state space when

using function approximators such as neural networks. Additionally, we show our estimator is

consistent under some regularity assumptions.

• Chapter 4 (Identification of Subgroups With Similar Benefits in Off-Policy Policy Evaluation):

We describe heterogeneous treatment effects in off-policy policy evaluation in sequential set-

tings. We demonstrate the limitation of the existing method for non-sequential settings when

applied to the sequential setting. We leverage recursive partitioning to develop an algorithm to

automatically discover subgroups with different treatment effects and estimate the difference

between the behavior and the evaluation policy for these subgroups.

We hope that this dissertation provides a step toward more robust reinforcement learning algo-

rithms that can unleash the potential of RL to high-stakes real-world applications such as health

care and education.



Chapter 2

Sample Efficient Risk Sensitive

Policy Learning

While maximizing expected return is the goal in most reinforcement learning approaches, risk-

sensitive objectives such as conditional value at risk (CVaR) are more suitable for many high-stakes

applications. However, relatively little is known about how to explore to quickly learn policies with

good CVaR. In this section, we present the first algorithm for sample-efficient learning of CVaR-

optimal policies in Markov decision processes based on the optimism in the face of uncertainty

principle. This method relies on a novel optimistic version of the distributional Bellman operator

that moves probability mass from the lower to the upper tail of the return distribution. We prove

asymptotic convergence and optimism of this operator for the tabular policy evaluation case. We

further demonstrate that our algorithm finds CVaR-optimal policies substantially faster than existing

baselines in several simulated environments with discrete and continuous state spaces.

2.1 Introduction

A key goal in reinforcement learning (RL) is to quickly learn to make good decisions by interacting

with an environment. In most cases, the quality of the decision policy is evaluated with respect to a

risk-neutral objective, its expected (discounted) sum of rewards. However, in many interesting cases,

it is important to consider the full distributions over the potential sum of rewards, and the desired

objective may be a risk-sensitive measure of this distribution. For example, a patient undergoing

surgery for a knee replacement will (hopefully) only experience that procedure once or twice, and

may be interested in the distribution of potential results for a single procedure, rather than what

may happen on average if he or she were to undertake that procedure hundreds of time. Finance

7



2.1. INTRODUCTION 8

and (machine) control are other cases where interest in risk-sensitive outcomes is common. Risk-

neutral objective fails to address phenomena like loss aversion, where the subjective impact of a loss

is often greater than that of an equivalent gain [Tversky and Kahneman, 1992]. This has particular

relevance in high-stakes settings. For example, in finance, people may prefer investment strategies

that yield modest but stable returns over higher-yield strategies that have a chance of bankrupting

them. Likewise, patients undergoing surgery might opt for a procedure with a longer recovery time

if it means minimizing the already small chance of a serious complication.

A popular risk-sensitive measure of a distribution of outcomes is the Conditional Value at Risk

(CVaR) [Artzner et al., 1999]. Intuitively, CVaR is the expected reward in the worst α-fraction of

outcomes, and has seen extensive use in financial portfolio optimization [Zhu and Fukushima, 2009],

often under the name expected shortfall. While there has been recent interest in the RL community in

learning to converge or identify good CVaR decision policies in Markov decision processes [Chow and

Ghavamzadeh, 2014, Chow et al., 2015, Tamar et al., 2015b, Dabney et al., 2018], interestingly we are

unaware of prior work focused on how to quickly learn such CVaR MDP policies, even though sample

efficient RL for maximizing expected outcomes is a deep and well-studied theoretical [Jaksch et al.,

2010, Dann et al., 2018] and empirical [Bellemare et al., 2016] topic. Sample efficient exploration

seems of equal or even more importance in the case when the goal is risk-averse outcomes.

In this section, we work towards sample efficient reinforcement learning algorithms that can

quickly identify a policy with an optimal CVaR. Our focus is on minimizing the amount of experience

needed to find such a policy, similar in spirit to probably approximately correct RL methods for

expected reward. Note that this is different than another important topic in risk-sensitive RL, which

focuses on safe exploration: algorithms that focus on avoiding any potentially very poor outcomes

during learning. These typically rely on local smoothness assumptions and do not typically focus

on sample efficiency [Berkenkamp et al., 2017, Koller et al., 2018]; an interesting question for future

work is whether one can do both safe and efficient learning of a CVaR policy. Our work is suitable

for the many settings where some outcomes are undesirable but not catastrophic.

Our approach is inspired by the popular and effective principle of optimism in the face of uncer-

tainty (OFU) in sample efficient RL for maximizing expected outcomes [Strehl and Littman, 2008,

Brafman and Tennenholtz, 2002]. Such work typically works by considering uncertainty over the

MDP model parameters or state-action value function and constructing an optimistic value function

given that uncertainty is then used to guide decision making. To take a similar idea for rapidly learn-

ing the optimal CVaR policy, we seek to consider the uncertainty in the distribution of outcomes

possible and the resulting CVaR value. To do so, we use the Dvoretzky-Kiefer-Wolfowitz (DKW)

inequality. While to our knowledge this has not been previously used in reinforcement learning

settings, it is a very useful concentration inequality for our purposes as it provides bounds on the

true cumulative distribution function (CDF) given a set of sampled outcomes. We leverage these

bounds to compute optimistic estimates of the optimal CVaR.
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Our interest is in creating empirically efficient and scalable algorithms that have a theoretically

sound grounding. To that end, we introduce a new algorithm for quickly learning a CVaR policy

in MDPs and show that at least in the evaluation case in tabular MDPs, this algorithm indeed

produces optimistic estimates of the CVaR. We also show that it does converge eventually. We

accompany the theoretical evidence with an empirical evaluation. We provide encouraging empirical

results on a machine replacement task [Delage and Mannor, 2010], a classic MDP where risk sensitive

policies are critical, as well as a well validated simulator for type 1 diabetes [Man et al., 2014] and a

simulated treatment optimization task for HIV [Ernst et al., 2006]. In all cases we find a substantial

benefit over simpler exploration strategies. To our knowledge this is the first algorithm that performs

strategic exploration to learn good CVaR MDP policies.

2.2 Background and Notation

Let X be a bounded random variable with cumulative distribution function F (x) = P[X ≤ x].

The conditional value at risk (CVaR) at level α ∈ (0, 1) of a random variable X is then defined

as [Rockafellar et al., 2000]:

CVaRα(X) := sup
ν

{
ν − 1

α
E[(ν −X)+]

}
(2.1)

We define the inverse CDF as F−1(u) = inf{x : F (x) ≥ u}. It is well known that when X has a

continuous distribution [Acerbi and Tasche, 2002].

CVaRα(X) = EX∼F
[
X|X ≤ F−1(α)

]
For ease of notation we sometimes write CVaR as a function of the CDF F , CVaRα(F ).

We are interested in the CVaR of the discounted cumulative reward in a Markov Decision

Process (MDP). An MDP is defined by a tuple (S,A, R, P, γ), where S and A are finite state

and action space, r ∼ R(s, a) is the reward distribution, s′ ∼ P (s, a) is the transition kernel and

γ ∈ [0, 1) is the discount factor. A stationary policy π maps each state s ∈ S to a probability

distribution over action space A.

Let Z denote the space of distributions over returns (discounted cumulative rewards) from such

an MDP, and assume that these returns are in [Vmin, Vmax] almost surely, where Vmin ≥ 0. We define

Zπ(s, a) ∈ Z to be the distribution of the return of policy π with CDF FZπ(s,a) and initial state

action pair (s, a) ∈ S ×A as

Zπ(s, a) := Lawπ

( ∞∑
t=0

γtRt|S0 = s,A0 = a

)

RL algorithms most commonly optimize policies for expected return and explicitly learn Q-values,
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Qπ(s, a) = E[Zπ(s, a)] by applying approximate versions of Bellman backups. Instead, we are

interested in other properties of the return distribution and we will build on several recently proposed

algorithms that aim to learn a parametric model of the entire return distribution instead of only its

expectation. Such approaches are known as distributional RL methods.

Distributional Reinforcement Learning Distributional RL methods apply a sample-based ap-

proximation to distributional versions of the usual Bellman operators. For example, one can define

a distributional Bellman operator [Bellemare et al., 2017] as T π : Z → Z as

T πZπ(s, a)
D
:= R(s, a) + γPπZ(s, a) (2.2)

where
D
= denotes equality in distribution, and the transition operator is defined as PπZ(s, a)

D
:=

Z(s′, a′) with s′ ∼ P (·|s, a), a′ ∼ π(s). The optimality version T is similarly any T Z = T πZ where

π is an optimal policy w.r.t. expected return. Note that this is not necessarily unique when there

are multiple optimal policies. Rowland et al. [2018] showed that T π is a
√
γ-contraction in the

Cramér-metric, ¯̀
2

¯̀
2(Z1, Z2) = sup

s,a
`2 (Z1(s, a), Z2(s, a)) = sup

s,a

(∫
(FZ1(s,a)(u)− FZ2(s,a)(u))2du

)1/2

(2.3)

One of the canonical algorithms in distributional RL is CDRL or C51 [Bellemare et al., 2017]

which represent the return distribution Zπ as a discrete distribution with fixed support on N atoms

{zi = Vmin + i∆z : 0 ≤ i < N},∆z := Vmax−Vmin

N−1 the discrete distribution is parameterized as

θ : S ×A → RN :

Zθ(s, a) = zi w.p. pi(s, a) =
eθi(s,a)∑
j e
θj(s,a)

Essentially, C51 uses a sample transition (s, a, r, s′) to perform an approximate Bellman backup

Z ← ΠC T̂ Z, where T̂ is a sample-based Bellman operator and ΠC is a projection back onto the

support of discrete distribution {z0, . . . , zN−1}.

2.3 Optimistic Distributional Operator

In contrast to the typical RL setup where an agent tries to maximize its expected return, we seek

to learn a stationary policy that maximizes the CVaRα of the return at risk level α. Note that

the CVaR-optimal policy at any state can be non-stationary [Shapiro et al., 2009], as it depends on

the sum of rewards achieved up to that state. For simplicity, as Dabney et al. [2018] we instead

seek a stationary policy, which generally can be suboptimal but typically still achieve high CVaR,
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Figure 2.1: Top-left: Empirical CDF Top-right: The lower DKW confidence band (a shifted-down
version of the empirical CDF). Bottom-left: Empirical PDF. Bottom-right: Optimistic PDF.

as observed in our experiments. To find such policies quickly, we follow the optimism in the face of

uncertainty (OFU) principle and introduce optimism in our CVaR estimates to guide exploration.

While adding a bonus to rewards is a popular approach for optimism in the standard expected

return case [Ostrovski et al., 2017], we here follow a different approach and introduce optimism

into our return estimates by shifting the empirical CDFs. Formally, consider a return distribution

Z(s, a) ∈ Z with CDF FZ(s,a)(x). We define the optimism operator Oc : Z → Z as

FOcZ(s,a)(x) =

(
FZ(s,a)(x)− c1{x ∈ [Vmin, Vmax)}√

n(s, a)

)+

(2.4)

where c is a constant and (·)+ is short for max{·, 0}. In the definition above, n(s, a) is the number of

times the pair (s, a) has been observed so far or an approximation such as pseudo-counts [Bellemare

et al., 2016]. By shifting the cumulative distribution function down, this operator essentially puts

probability mass from the lower tail to the highest possible value Vmax. An illustration is provided

in Figure 2.1. This approach to optimism is motivated by an application of the DKW-inequality to

the empirical CDF. As shown recently by Thomas and Learned-Miller [2019], this can yield tighter

upper confidence bounds on the CVaR. Our approach also has the advantage that the scaling c does

not depend on the risk level α, unlike a potential reward bonus approach that would likely require

more parameter tuning.
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2.4 Theoretical Analysis

The optimistic operator introduced above operates on the entire return distribution and our algo-

rithm introduced in the next section combines this optimistic operator to estimated return-to-go

distributions. As such, it belongs to the family of distributional RL methods [Dabney et al., 2018].

These methods are a recent development and come with strong asymptotic convergence guarantees

when used for policy evaluation in tabular MDPs [Rowland et al., 2018]. Yet, finite sample guar-

antees such as regret or PAC bounds still remain elusive for distributional RL policy optimization

algorithms.

A key technical challenge in proving performing bounds for distributionally robust policy op-

timization during RL is that convergence of the distributional Bellman optimality operator can

generally not be guaranteed. Prior results have only showed that if the optimization process itself

is to compute a policy which maximizes expected returns, such as Q-learning, then convergence

of the distirbutional Bellman optimality operator is guaranteed to converge [Rowland et al., 2018,

Theorem 2]. Note however that if the goal is to leverage distributional information to compute a

policy to maximize something other than expected outcomes, such as a risk sensitive policy like we

consider here, no prior theoretical results are known in the reinforcement learning setting to our

knowledge. However, it is promising that there is some empirical evidence that one can compute

risk-sensitive policies using distributional Bellman operators [Dabney et al., 2018] which suggests

that more theoretical results may be possible.

Here we take a first step towards this goal. Fortunately, convergence issues of the distributional

Bellman optimality have not been observed empirically which suggests that better theoretical char-

acterizations could enable finite-sample guarantees eventually. Developing such characterizations is

an important problem but not the focus of this chapter. Our primary aim in this work is to provide

tools to introduce optimism into distributional return-to-go estimates to guide sample-efficient explo-

ration for CVaR. Therefore, our theoretical analysis focuses on showing that this form of optimism

does not harm convergence and is indeed a principled way to obtain optimistic CVaR estimates.

First, we prove that the optimism operator is a non-expansion in the Cramér distance. This

results shows that this operator can be used with other contraction operators without negatively

impacting the convergence behaviour. Specifically we can guarantee convergence with distributional

Bellman backup.

Proposition 1. For any c, the Oc operator is a non-expansion in the Cramér distance ¯̀
2. This

implies that optimistic distributional Bellman backups OcT π and the projected version ΠCOcT π are
√
γ-contractions in ¯̀

2 and iterates of these operators converge in ¯̀
2 to a unique fixed-point.

Proof. Consider Z,Z ′ ∈ Z, any state s ∈ S and action a ∈ A with CDFs FZ(s,a) and FZ′(s,a) and
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consider the application of the optimism operator Oc:∫
(FOcZ(s,a)(x)− FOcZ′(s,a)(x))2dx =

∫ Vmax

Vmin

([FZ(s,a)(x)− c]+ − [FZ′(s,a)(x)− c]+)2dx (2.5)

Generally, for any a ≥ b we have

([a− c]+ − [b− c]+)2 =


(a− b)2 if a, b ≥ c

(a− c)2 ≤ (a− b)2 if a > c ≥ b

0 if c ≥ a, b

(2.6)

and applying this case-by-case bound to the quantity in the integral above, we get∫
(FOcZ(s,a)(x)− FOcZ′(s,a)(x))2dx ≤

∫ Vmax

Vmin

(FZ(s,a)(x)− FZ′(s,a)(x))2dx (2.7)

By taking the square root on both sides as well as a max over states and actions, we get that Oc is

a non-expansion in ¯̀
2. The rest of the statement follows from the fact that T π is a

√
γ-contraction

and ΠC a non-expansion [Rowland et al., 2018] and the Banach fixed-point theorem.

This result does not include Bellman backups with the Bellman-optimality operator T or its

generalization Tα to CVaR-greedy policies. Here, Tα is any operator that satisfies TαZ = T πZ for

any policy π that is greedy w.r.t. CVaR at level α, i.e., π(s) ∈ argmaxa CVaRα(Z(s, a)). Note

that Tα = T for α = 1. The lack of general convergence guarantees in the control case is because

optimality operators are generally not contractions [Bellemare et al., 2017] and not a limitation of

our optimism operator and we have not observed any convergence issues in our experiments.

Next, we provide theoretical evidence that this operator indeed produces optimistic CVaR es-

timates. Consider here batch policy evaluation in MDPs M with finite state- and action-spaces.

Assume that we have collected a fixed number of samples n(s, a) (which can vary across states and

actions) and build an empirical model M̂ of the MDP. For any policy π, let T̂ π denote the distri-

butional Bellman operator in this empirical MDP. Then we indeed achieve optimistic estimates by

the following result:

Theorem 1. Let the shift parameter in the optimistic operator be sufficiently large which is c =

O (ln(|S||A|/δ)). Then with probability at least 1 − δ, the iterates CVaRα((OcT̂ π)mZ0) converges

for any risk level α and initial Z0 ∈ Z to an optimistic estimate of the policy’s conditional value at

risk. That is, with probability at least 1− δ,

∀s, a : CVaRα((OcT̂ π)∞Z0(s, a)) ≥ CVaRα(Zπ(s, a)).

Proof of this theorem is presented in Appendix A.2. This theorem uses the DKW inequality which
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to the best of our knowledge has not been used for MDPs. Note, that the statement guarantees

optimism for all risk levels α ∈ [0, 1] without paying a penalty for it. Since we estimate the transitions

and rewards for each state and action separately, one generally does not expect to be able to use

a shift parameter smaller than Ω(ln(|S||A|/δ)). Thus, Theorem 1 is unimprovable in that sense.

Specifically, we avoid a polynomial dependency on the number of states |S| in the shift parameter

c by combining two techniques: (1) concentration inequalities w.r.t. the optimal CVaR of the next

state for a certain finite set of alphas and (2) a covering argument to get optimism for all infinitely

many α ∈ [0, 1]. This is substantially more involved than the expected reward case.

These results are a key step towards finite-sample analyses. In future work it would be very in-

teresting to obtain a convergence analysis for distributional Bellman optimality operators in general,

though this is outside the scope of this current paper. Such a result could lead to sample-complexity

guarantees when combined with our existing analysis.

2.5 Algorithm

In the policy evaluation case where we would like to compute optimistic estimates of the CVaR

of a given observed policy π, our algorithm essentially performs an approximate version of the

optimistic Bellman update OcT π where T π is the distributional Bellman operator. from Section 2.2,

this operator can be composed by distributional Bellman operator T π which results in optimistic

Bellman evaluation update . We further analyze the theoretical properties of this operator and show

that an optimistic estimate of CVaR can be obtained with empirical transition kernel P̂ and reward

distribution FR̂.

For the control case where we would like to learn a policy that maximizes CVaR, we instead

define a distributional Bellman optimality operator Tα. Analogous to prior work [Bellemare et al.,

2017], Tα is any operator that satisfies TαZ = T πZ for some policy π that is greedy w.r.t. CVaR

at level α. Our algorithm then performs an approximate version of the optimistic Bellman backup

OcTα, shown in Algorithm 1.

The main structure of our algorithm resembles categorical distributional reinforcement learning

(C51) [Bellemare et al., 2017]. In a similar vein, our algorithm also maintains a return distribution

estimate for each state-action pair, represented as a set of N weights pi(s, a) for i ∈ [N ]. These

weights represent a discrete distribution with outcomes at N equally spaced locations z0 < z1 <

· · · < zN−1, each ∆z = Vmax−Vmin

N−1 apart. The current probability assigned to outcome zi in (s, a) is

denoted by pi(s, a), where the atom probabilities p1:N (s, a) are given by a differentiable model such

as a neural network, similar to C51. Note that other parameterized representations of the weights

are straightforward to incorporate [Bellemare et al., 2017].

The main differences between Algorithm 1 and existing distributional RL algorithms (e.g. C51)

are highlighted in red. We first apply an optimism operator to our successor distribution FZ(st+1,a)
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Algorithm 1: CVaR-MDP

Input: Parameters: γ, risk level α ∈ [0, 1], c ≥ 0, density model ρ,
1 for t=1, . . . do
2 Observe transition st, at, rt, st+1;
3 for a′ ∈ A do

/* emp. CDF of return for (st+1, a′) */

4 F̂ a
′
(x) :=

∑N−1
j=0 pj(st+1, a

′)1{x ≥ zj};
/* Pseudo-counts using density model */

5 n̂ = 1
exp(κt−1/2α(∇ log ρθ(st+1,a′))2)−1

/* Optimistic CDF */

6 F̃ a
′
(x) :=

[
F̂ a
′
(x)− c1{x∈[Vmin,Vmax)}√

n̂

]+
;

7
if Control then

a? ← argmaxa∈A CVaRα(F̃ a)

if Evaluation then
a? ∼ π(.|st+1)

8 mi = 0 for i ∈ {0, . . . , N − 1} ;
9 for j ∈ 0, . . . , N − 1 do

/* optimistic PDF from opt. CDF */

10 p̃j ← F̃ a
? (
zj + ∆z

2

)
− F̃ a?

(
zj − ∆z

2

)
;

/* Project on support of {zi} */

11 T̃ zj ← [rt + γzj ]
Vmax

Vmin
;

/* Distribute prob. of T̃ (zj) */

12 bj ← (T̃ zj − Vmin)/(∆z);
13 l← bbjc ; u← dbje;
14 ml ← ml + p̃j(u− bj);
15 mu ← mu + p̃j(bj − l);
16 Update return weights p1:N by optimization step on cross-entropy loss

−
∑N−1
j=0 mj log pj(st, at) ;

/* Take next action */

17 at+1 ← a? ;
18 Update density model for ρ with additional observation of (st+1, at+1);

(Lines 4–6) to form an optimistic CDF F̃Z(st+1,a) for all actions a ∈ A. This operator should

encourage exploring actions that might lead to higher CVaR policies for our input α. These optimistic

CDFs are also used to decide on the successor action in the control setting (Line 7). Then, similar

to C51 we apply the Bellman operator T̂ zi for i ∈ [N ] and distribute the probability of p̃i to the

immediate neighbours of T̂ zi, where we calculate the probability mass p̃i with the optimistic CDF

F̃Z(st+1,a?) (Line 10).

Following Bellemare et al. [2017], we train this model using the cross-entropy loss, which for a

particular state transition at time t is

−
N−1∑
j=0

mj log pj(st, at) (2.8)
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where m0:N−1 are the weights of the target distribution computed in Lines 8–15 in Algorithm 1. In

the tabular setting we can directly update the probability mass pj by

pj(st, at) = (1− β)pj(st, at) + βmj(st, at)

where β is the learning rate.

In tabular settings, the counts n(s, a) can be directly stored and used; however, this is not the case

in continuous settings. For this reason, we adopt the pseudo-count estimation method proposed by

Ostrovski et al. [2017] and replace n(s, a) by a pseudo-count N̂t(s, a) in the optimistic distributional

operator (Equation 2.4). Let ρ be a density model and ρt(s, a) the probability assigned to the state

action pair (s, a) by the model after t training steps. The prediction gain PG of ρ is defined

PGt(s, a) = log ρ′t(s, a)− log ρt(s, a) (2.9)

Where ρ′t(s, a) is the probability assigned to (s, a) if it were trained on that same (s, a) one more

time. Now we define the pseudo count of (s, a) as

N̂t(s, a) = (exp(κt−
1
2 (PG(s, a))+ − 1)−1 (2.10)

where κ is a constant hyper-parameter, and (PG(s, a))+ thresholds the value of the prediction gain

at 0.

Our setting differs from Ostrovski et al. [2017] in the sense that we have to compute the count

before taking the action a. A naive way would be to try all actions and train the model to compute the

counts but this method is slow and requires the environment to support an undo action. Instead, we

can estimate PG for all actions as follows. Consider the density model parametrized by θ, ρ(s, a; θ).

After observing (s, a), the training step to maximize the log likelihood will update the parameters

by θ′ = θ + α∇θ log ρ(s, a; θ), where α is the learning rate. So we can approximate the new log

probability using a first-order Taylor expansion

log ρ′t(s, a) = log ρ(s, a; θ′)

≈ log ρ(s, a; θ) +∇θ log ρ(s, a; θ)(θ′ − θ)

= log ρ(s, a; θ) + α(∇θ log ρ(s, a; θ))2.

This calculation suggests that the prediction gain can be estimated just by computing the gradient

of the log likelihood given a state-action pair, i.e., PG(s, a) ≈ α(∇θ log ρ(s, a; θ))2. As discussed in

Graves et al. [2017] this estimate of prediction gain is biased, but empirically we have found this

method to perform well.
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2.6 Experimental Evaluation

We validate our algorithm empirically in three simulated environments against baseline approaches.

Finance, health and operations are common areas where risk-sensitive strategies are important, and

we focus on two health domains and one operations domain.

The majority of prior risk-sensitive RL work has not focused on efficient exploration, and there

has been very little deep distributional RL work focused on risk sensitivity. Our key contribution

is to evaluate the impact of more strategic exploration on the efficiency with which a risk-sensitive

policy can be learned. We compare to following approaches:

1. ε-greedy CVaR: In this benchmark we use the same algorithm, except we do not introduce an

optimism operator, instead using an ε-greedy approach for exploration. This benchmark can

be viewed as analogous to the distributional RL methods of C51 [Bellemare et al., 2017] if the

computed policy had optimized for CVaR instead of expected reward.

2. IQN-ε-greedy CVaR: In this benchmark we use implicit quantile network (IQN) that also uses ε-

greedy method for exploration [Dabney et al., 2018]. We adopted the dopamine implementation

of IQN [Castro et al., 2018].

3. CVaR-AC: An actor-critic method proposed by [Chow and Ghavamzadeh, 2014] that maxi-

mizes the expected return while satisfying an inequality constraint on the CVaR. This method

relies on the stochasticity of the policy for exploration.

Note that a comparison to an expectation maximizing algorithm is uninformative since such ap-

proaches are maximizing different (non-risk-sensitive) objectives.

All of these algorithms use hyperparameters, and it is well recognized that ε-greedy algorithms

can often perform quite well if their hyperparameters are well-tuned. To provide a fair comparison,

we evaluated across a number of schedules for reducing the ε parameter for both ε-greedy and

IQN, and a small set of parameters (4-7) for the optimism value c for our method. We used the

specification described in [Chow and Ghavamzadeh, 2014] for CVaR-AC.

All results are averaged over 10 runs and we report 95% confidence intervals. We report the

performance of ε-greedy at evaluation time (setting ε = 0), which is the best performance of ε-

greedy.

Machine Replacement Machine repair and replacement is a classic example in the risk sensitive

literature, though to our knowledge no prior work has considered how to quickly learn a good risk-

sensitive policy for such domains. Here we consider a minor variant of a prior setting [Delage and

Mannor, 2010].

Specifically, as shown in Figure 2.2, the environment consists of a chain of n (25 in our experi-

ments) states. There are two actions: replace and don’t replace the machine. Choosing replace at
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Figure 2.2: Machine Replacement: This environment consists of a chain of n states, each affording
two actions: replace and don’t replace.
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Figure 2.3: Machine Replacement: The thick grey dashed line is the CVaR0.25-optimal policy. The
thin dashed lines labeled as the suboptimal policy is the optimal expectation-maximizing policy.
The shaded area shows the 95% confidence intervals.

any state terminates the episode, while choosing don’t replace moves the agent to the next state

in the chain. At the end of the chain, choosing don’t replace terminates the episode with a high

variance cost, and choosing replace terminates the episode with a higher cost but lower variance.

This environment is especially a challenging exploration task due to the chain structure of the MDP,

as well as the high variance of the reward distributions when taking actions in the last state. Addi-

tionally in this MDP it is feasible to exactly compute the CVaR0.25-optimal policy, which allows us

to compare the learned policy to the true optimal CVaR policy. Note here that the optimal policy

for maximizing CVaR0.25 is to replace on the final state in the chain to avoid the high variance

alternative; in contrast, the optimal policy for expected return always chooses don’t replace.

Specifically, the environment in our experiment consist of n states (we use n = 25 in the experi-

ment), where action replace transitions to the terminal state with cost N (µr,t, σr,t) at state t, where

µr,t = rmax − t
n (rmax − rmin) and σr,t = 0.1 + 0.01t. Action don’t replace has cost N (0, 1e − 2)

and transitions to state t + 1. In our experiment we used rmax = 23, rmin = 10. However, for the

last state n action don’t replace has cost N (µr, 10), where we used µr = 8, and transitions to the

terminal state. For C51 algorithm we use Vmin = −50, Vmax = 50, γ = 0.99, learning rate 0.01 and
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Figure 2.4: Machine Replacement with different risk levels. Left: risk level α = 0.1, Right: risk level
α = 0.5

51 atoms.

Tuning: We use ε-greedy with schedule (start, end,n) = (0.9, 0.1, 5000) that starts with ε = start

and decays linearly to ε = end in n time steps, staying constant afterwards. This schedule achieved

the best performance in our experiments when compared to other linear schedules {(0.9, 0.3, 5000),

(0.9, 0.1, 10000), (0.9, 0.1, 15000), (0.9, 0.05, 5000)}, and exponential decays with schedule in the form

of (ε0, d, step): {(0.9, 0.99, 5), (0.9, 0.99, 20), (0.9, 0.99, 2), (0.9, 0.99, 30), (0.5, 0.99, 5)} where

ε = ε0 × depisode/step. We have also tried our algorithm with optimism values of c = [0.25, 0.5, 1, 2].

For the actor critic method we use the CVaR limit as -10, radial basis function as kernel and other

set of hyper-parameters are as described in the appendix of Chow and Ghavamzadeh [2014].

Results: In Machine Replacement (Figure 2.3) we see that our method quickly converges to the

optimal CVaR performance.

Unfortunately despite our best efforts, our implementation of CVaR-AC did not perform well

even on the simplest environment, so we did not show the performance of this method on other

environments. One challenge here is that CVaR-AC has a significant number of hyper-parameters,

including 3 different learning rates schedule for the optimization process, initial Lagrange multipliers

and the kernel functions.

Additional to the risk level α = 0.25, we observe the same gain in the performance for other risk

levels. As shown in figure 2.4, optimism based exploration shows a significant gain over ε−greedy

exploration for risk levels α = 0.1 and α = 0.5.

HIV Treatment In order to test our algorithm on a larger continuous state space, we leverage an

HIV Treatment simulator. The environment is based on the implementation by [Geramifard et al.,

2015] of the physical model described in [Ernst et al., 2006]. The patient state is represented as a

6-dimensional continuous vector and the reward is a function of number of free HIV viruses, immune

response of the body to HIV, and side effects. There are four actions, each determining which

drugs are administered for the next 20 day period: Reverse Transcriptase Inhibitors (RTI), Protease

Inhibitors (PI), neither, or both. Typical treatments for HIV patients utilize cocktails consist of one
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or more RTIs in combination with a PI and patients taking these drugs experience many common

and sometimes highly undesirable side effects, often leading to poor compliance. So it is important

to minimize the side effects.

There are 50 time steps in total per episode, for a total of 1000 days. We chose here a larger

number of days per time step compared to the typical setup (200 steps of 5 days each) to facilitate

faster experimentation. This design choice also makes the exploration task harder, since taking one

wrong action can drastically destabilize a patient’s trajectory. The original proposed model was

deterministic, which makes the CVaR policy identical to the policy optimizing the expected value.

Such simulators are rarely a perfect proxy for real systems, and in our setting we add Gaussian noise

∼ N (0, 0.01) to the efficacy of each drug (RTI: ε1 and PI: ε2 in Ernst et al. [2006]). This change

necessitates risk-sensitive policies in this environment.

The environment is an implementation of the physical model described in [Ernst et al., 2006].

The state space is of dimension 6 with and action space is of size 4, indicating the efficacy of being on

the treatment. ε1, ε2 described in [Ernst et al., 2006] takes values as ε1 ∈ {0, 0.7} and ε2 ∈ {0, 0.3}.
We have also added the stochasticity to the action by a random gaussian noise. So the efficacy of a

drug is computed as εi +N (0, 0.01).

The reward structure is defined similar to the prior work [Ernst et al., 2006]. And we simulate

for 1000 time steps, where agent can take action in 50 steps (each 20 simulation step) and actions

remains constant in each interval. While trianing we normalize the reward by dividing them by 1e6.

Categorical Distributional RL: The C51 model consist of 4 hidden layers each of size 128 and

ReLU activation function, followed by of |A| each with 151 neurons followed by a softmax activation,

for representing the distribution of each action. We used Adam optimizer with learning rate decay

schedule from 1e − 3 to 1e − 4 in half a number of episodes, β1 = 0.9, β2 = 0.999 and ε = 1e − 8.

We set Vmax = 40, Vmin = −10, 151 probability atoms, and used batch size of 32. For computing

the CVaR we use 50 samples of the return.

Implicit Quantile Network: IQN model consists of 4 hidden layers with size 128 and ReLU

activation. Then an embedding of size 64 computed by ReLU(
∑n−1
i=0 cos(πiτ)wij + bj). Then we

take the element wise multiplication of the embedding and the output of 4 hidden layers, followed by

a fully connected layer with size 128 and ReLU activation, and a softmax layer. We used 8 samples

for N and N ′ and 32 quantiles.

Density Model: For log likelihood density model we used realNVP [Dinh et al., 2016] with 3

layers each of size 64. The input of the model is a concatenated vector of (s, a). We used same

hyper parameters for optimizer as in C51 model. We have used constant κ = 1e− 5 for computing

the pseudo-count.

Tuning: We have tuned our method, ε-greedy and IQN. For ε-greedy we tried 5 different linear

schedule of ε-greedy, {(0.9, 0.05, 10), (0.9, 0.05, 8), (0.9, 0.05, 5), (0.9, 0.05, 4), (0.9, 0.05, 2)} where

first element is the initial ε, second element is the final ε and the third element is episode ratio (i.e.
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Figure 2.5: Comparison of our approach against an ε-greedy and IQN baseline. All models were
trained to optimize the CVaR0.25 of the return on a stochastic version of the HIV simulator [Ernst
et al., 2006]. Top: Objective CVaR0.25; Bottom: Discounted expected return of the same policies as
in top plot.

epsilon starts from initial and reaches to the final value in episode ratio fraction of total number of

episodes, linearly). Additionally we have tried 5 different exponential decay schedule for ε-greedy

and IQN in the form of (ε0, d, step): {(1.0, 0.9, 10), (1.0, 0.9, 100), (1.0, 0.9, 500), (1.0, 0.99, 10),

(1, 0.99, 100)} where ε = ε0 × depisode/step. The first of the linear decay set preformed the best. We

have also tested our algorithm with constant optimism values of (0.2, 0.4, 0.5, 0.8, 1, 2, 5) where we

picked the best value 0.8.

Results: In the HIV Treatment we also see a clear and substantial benefit to our optimistic

approach over the baseline ε-greedy approach and IQN(Figure 2.5).

Diabetes 1 Treatment Patients with type 1 diabetes regulate their blood glucose level with

insulin in order to avoid hypoglycemia or hyperglycemia (very low or very high blood glucose level,

respectively).

An open source implementation of type 1 diabetes simulator [Man et al., 2014] simulates 30

different virtual patients, 10 child, 10 adolescent and 10 adult. For our experiments in this paper we

have used adult#003, adult#004 and adult#005. Additionally we have used "Dexcom" sensor for

CGM (to measure blood glucose level) and "Insulet" as a choice of insulin pump. All simulations

are 10 hours for each patient and after 10 hour, patient resets to the initial state. Each step of

simulation is 3 minutes.

State space is a continous vector of size 2 (glucose level, meal size) where glucose level is the

amount of glucose measured by "Dexcom" sensor and meal size is the amount of Carbohydrate in

each meal.

Action space is defined as (bolus, basal=0) where amount of bolus injection discretized by 6

bins between 30 (max bolus, a property of the "Insulet" insulin pump) and 0 (no injection).

Additionally we inject two source of stochasticity to the taken action, assume action a = (ab, 0) at
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time t is the agent’s decision, then we take the action a = (a′b, 0) at time t′ where:

a′b = ab +N (0, 1)

t′ = t+ c− bx× cc

Where x ∼ P (x; 1) = 2x−1 is drawn from the power law distribution and c = 5. Note that this

means delay the action at most 5 step where the probability of taking the action at time t is higher

than time t + i, i ≥ 1 following the power law. Since each step of simulation is 3 minutes, patient

might take the insulin up to 15 minutes after the prescribed time by the agent.

Reward structure is defined similar to the prior work [Bastani, 2014] as following:

r(bg) =

−
(bg′−6)2

5 if bg′ < 6

− (bg′−6)2

10 if bg′ ≥ 6

Where bg′ = bg/18.018018 which is the estimate of bg (blood glucose) in mmol/L rather than mg/dL.

Additionally if the amount of glucose is less than 39 mg/dL agent incurs a penalty of −10.

We generated a meal plan scenario for all the patients that is meal of size 60, 20, 60, 20 CHO

with the schedule 1 hour, 3 hours, 5 hours and 7 hours after starting the simulation. Notice that

this will make the simulation horizon 200 steps and 5 actionable steps (initial state, and after each

meal).

Categorical Distributional RL: The C51 model consist of 2 hidden layers each of size 32 and

ReLU activation function, followed by of |A| each with 51 neurons followed by a softmax activation,

for representing the distribution of each action.

We used Adam optimizer with learning rate 1e− 3, β1 = 0.9,β2 = 0.999 and ε = 1e− 8. We set

Vmax = 15, Vmin = −40, 51 probability atoms, and used batch size of 32. For computing the CVaR

we use 50 samples of the return.

Density Model: For log likelihood density model we used realNVP [Dinh et al., 2016] with 3

layers each of size 64. The input of the model is a concatenated vector of (s, a). We used same

hyper parameters for optimizer as in C51 model. We have used constant κ = 1e− 5 for computing

the pseudo-count.

Tuning: We have tuned our method and ε-greedy on patient adult#001 and used the same

parameters for the other patients. We tried 5 different linear schedule of ε-greedy, {(0.9, 0.1, 2),

(0.9, 0.05, 4), (0.9, 0.05, 6), (0.9, 0.3, 4), (0.9, 0.3, 4), (0.9, 0.05, 10)} where first element is the

initial ε, second element is the final ε and the third element is episode ratio (i.e. epsilon starts

from initial and reaches to the final value in episode ratio fraction of total number of episodes,

linearly). Additionally we have tried 5 different exponential decay schedule for ε-greedy in the form

of (ε0, d, step): {(0.9, 0.99, 5), (0.9, 0.99, 20), (0.9, 0.99, 2), (0.9, 0.99, 30), (0.5, 0.99, 5)} where

ε = ε0×depisode/step. The first of the exponential decay set preformed the best. We have also tested
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Figure 2.6: Type 1 diabetes simulator: CVaR0.25 for three different adults. Plots are averaged over
10 runs with 95% CI.

our algorithm with constant optimism values of [0.2, 0.4, 0.5, 0.8, 1, 2, 5] where we picked the best

value 0.5.

This domain also readily offers a suite of related tasks, since the environment simulates 30 patients

with slightly different dynamics. Tuning hyper-parameters on the same task can be misleading

[Henderson et al., 2018], as is the case in our two previous benchmarks. In this setting we tune

baselines and our method on one patient, and test the performance on different patients.

Figure 2.6 is particularly encouraging, as it shows the results for the diabetes simulator across

3 patients, where the hyperparameters were fixed after optimizing for a separate patient. Since in

real settings it would be commonly necessary to fix the hyperparameters in advance, this result

provides a nice demonstration that the optimistic approach can consistently equal or significantly

improve over an ε-greedy policy in related settings, similar to the well known results in Atari in

which hyperparameters are optimized for one game and then used for multiple others.

Safer Exploration. Our primary contribution is a new algorithm to learn risk-sensitive policies

quickly, with less data. However, an interesting side benefit of such a method might be that the

number of extremely poor outcomes experienced over time may also be reduced, not due to explicitly

prioritizing a form of safe exploration, but because our algorithm may enable a faster convergence

to a safe policy.

To evaluate this, we consider a risk measure proposed by [Clarke and Kovatchev, 2009], which

quantifies the risk of a severe medical condition based on how close their glucose level is to hypo-

glycemia (blood glucose, ≤3.9 mmol/l) and hyperglycemia (blood glucose, ≥10 mmol/l).

Table 2.1 shows the fraction of episodes in which each patient experienced a severely poor outcome

for each algorithm while learning. Optimism-based exploration approximately halves the number of

episodes with severely poor outcomes, highlighting a side benefit of our optimistic approach of more

quickly learning a good safe policy.

2.7 CVaR Bandit

In a K-armed bandit problem, an agent samples from one of K distributions at each turn. Informally,

the goal of the agent is to choose from “good” arms as often as possible. This requires the agent
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ε-greedy CVaR-MDP

Adult#003 11.2% ± 3.6% 4.2% ± 2.3%
Adult#004 2.3% ± 0.3% 1.4% ± 0.6%
Adult#005 3.3% ± 0.3% 1.7% ± 0.6%

Table 2.1: Type 1 Diabetes simulator, percent of episodes where patients experienced a severe
medical condition (hypoglycemia or hyperglycemia), averaged across 10 runs

to balance exploration of all possible arms with exploitation of the knowledge it has gained from

previous samples. This theoretical framework has applications ranging from clinical trial design

[Villar et al., 2015] to financial portfolio optimization [Shen et al., 2015] to optimizing websites

[White, 2012].

The multi-armed bandits literature has traditionally used the expected value of an arm’s reward

distribution as the proxy for the goodness of that arm. However, in many interesting cases, it is

important to consider the full distributions over the potential rewards, and the desired objective

may be a risk-sensitive measure of this distribution. For example, a patient undergoing a surgery

for a knee replacement will (hopefully) only experience that procedure once or twice, and may well

be interested in the distribution of potential results for a single procedure, rather than what may

happen on average if he or she were to undertake that procedure hundreds of time. Finance and

(machine) control are other cases where interest in risk-sensitive outcomes are common.

Similar to previous sections, we aim to develop a sample efficient algorithm for CVaR-Bandits

where we aim to find the CVaR optimal arm using efficient exploration. Existing OFU approaches for

risk-sensitive bandits derive bonus terms as upper-confidence bounds on the CVaR of the rewards

[Cassel et al., 2018], one might wonder whether tighter bonuses could be obtained by taking the

shape of the arm distribution into account. This may be especially relevant for an objective like

CVaR which is more sensitive to one side of the distribution than the other; for example, if the

distribution of observed samples is skewed towards the minimum observed reward, one might be

more confident in the corresponding CVaR estimate than if the samples were skewed in the other

direction.

We present a method that applies optimism directly at the sample level, generating a new set

of optimistic samples for each arm before computing the sample CVaR from them. This process

enables our algorithm to take the shape of the distribution into account, as opposed to count-based

reward bonuses added to the sample CVaR, which are agnostic to it. To construct these optimistic

samples, we use the Dvoretzky–Kiefer–Wolfowitz (DKW) concentration inequality [Dvoretzky et al.,

1956], which provides bounds on the true cumulative distribution function (CDF) given a set of sam-

pled outcomes. These bounds take the form of confidence bands around the empirical distribution

function (EDF), and we show how to modify our samples to match the optimistic band.

We will shortly illustrate how DKW allows us to both preserve strong theoretical guarantees and
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enable better empirical performance by being more sensitive to the underlying CDF distribution,

compared to bounds that are agnostic to this shape. Empirically, we observe that our DKW approach

of bounding the CDF achieves an order of magnitude lower CVaR-regret than Cassel et al. [2018]’s

approach which uses direct bonuses on the sample CVaR. These improvements on a variety of

simulated environments showcase the importance of distributionally-aware exploration for quickly

learning risk-sensitive policies.

2.7.1 Notation

We consider a stochastic K-armed bandit setting with rewards contained in [0, U ]. Ti(n) is the

number of times arm i has been pulled up to round n; At is the action taken during round t; [m]

denotes the set {1, . . .m} for any m; and Pi is the PDF of the distribution of rewards from the ith

arm. Let (Xi,t)i∈[k],t∈[n] denote a collection of independent random variables (the samples of our

arms), with the pdf of Xit equal to Pi. Xt = XAt,TAt (t)
is the reward in round t. The empirical

distribution function of Xi,s is F̂i,t(x) = 1
t

∑t
s=1 I{Xi,s ≤ x}.

Here, we define the CVaR-regret at time n as

Rαn = nmax
i

(CVaRα(Fi))− E

[
n∑
t=1

CVaRα(FAt)

]
= E

[
n∑
t=1

∆α
At

]
(2.11)

where Fa is the CDF of the distribution of rewards from the ath arm, At is the action taken at

time t and ∆α
a = maxj(CVaRα(Fj)) − CVaRα(Fa) is the suboptimality of arm a with respect to

CVaR. We also consider an alternate notion of regret for the CVaR setting from Cassel et al. [2018]

in Section 2.7.3 and Appendix A.3.3.

2.7.2 Algorithm

We present our algorithm, CVaR-UCB, in Algorithm 2. CVaR-UCB computes an optimistic estimate

of the CVaR of each arm from available samples, and then chooses the arm with the highest upper-

confidence bound in each turn. This optimistic estimate is based on the concentration of the empirical

cumulative distribution function (CDF) via the Dvoretzky-Kiefer-Wolfowitz [DKW; Dvoretzky et al.,

1956] inequality. DKW provides a deviation bound on the maximum difference between the empirical

CDF and the true CDF as a function of the number of samples observed. We can use the DKW

bound to compute an optimistic estimate of the CVaR value of an arm by computing the CVaR of

the optimistic confidence band around the CDF. This optimistic CVaR can be found very simply by

shifting the lowest-reward samples to the maximum reward U and then taking the empirical CVaR

of the resulting “optimistic samples”.

We now show that this simple method has strong regret bounds. To our knowledge this is the

first time that DKW-based optimism has been used in risk-sensitive RL or bandits. For proofs see
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Algorithm 2: CVaR-UCB

Input: Risk level α, reward range U , horizon n
1 Choose each arm once;

2 Set F̂a as the CDFs of each arm a on [0, U ] for all a ∈ [K];
3 Set Ta ← 1;
4 for t = 1, . . . , n do
5 for a = 1, . . . ,K do

6 εa ←
√

ln(2n2)
2Ta

;

7 F̃a(x)←
(
F̂a(x)− εi1{x ∈ [0, U)}

)+

; // optimistic empirical CDF

8 UCBDKW
a (t)← CVaRα(F̃a);

9 Play action At = argmaxi UCBDKW
i (t);

10 TAt ← TAt + 1;

11 Update empirical CDF F̂At of arm At;

Appendix A.3.1.

Theorem 2. Consider CVaR-UCB on a stochastic K-armed bandit problem with rewards bounded

in [0, U ]. For any given horizon n the expected CVaR-regret after this horizon is bounded as

Rαn ≤
∑

i∈[K]:∆α
i >0

4U2 ln(
√

2n)

α2∆α
i

+ 3

K∑
i=1

∆α
i ; Rαn ≤

4U

α

√
nK ln(

√
2n) + 3KU (2.12)

Note that the bounds differ on their dependence on the number of samples n and risk level

α: the problem-dependent bound is O
(
U2 logn/α2

)
, while the problem-independent bound grows as

O (U
√
n/α). Observe that for α = 1, we recover (in dominant terms) the well known upper confidence

bound regret results for comparing to the arm with the best expected reward [Bubeck et al., 2012].

2.7.3 Comparison with Direct Bonuses on the CVaR

In our proposed approach we compute an optimistic estimate of the CDF and then extract a CVaR

from this optimistic estimate. In contrast, in standard bandit methods optimizing for expected

outcomes, one simply adds a direct bonus to the mean to compute the upper-confidence bound.

Therefore, a natural alternative to our proposal, as introduced by Cassel et al. [2018], is to directly

compute the empirical CDF, extract the empirical CVaR and then add a bonus based on the number

of samples. Procedurally this is equivalent to right-shifting each observed sample, in contrast to our

algorithm in which we use DKW to compute a lower bound on the empirical CDF, effectively shifting

probability mass from the lower-reward tail to the max reward.

Interestingly we will shortly observe that empirically there is a significant difference between

these two styles of approaches. In particular, our approach of first computing a bound on the
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Figure 2.7: While our method shifts the lowest-reward samples to the maximum value, direct bonuses
on the sample CVaR effectively shift all samples to the right equally. For the uniform distribution
(left), both have the same effect, leading to an equivalent CVaR estimate (vertical black line).
However, for a Bernoulli distribution, our method can leave the empirical CVaR estimate unchanged
while direct bonuses always result in a looser estimate.

empirical CDF will yield a CVaR transformation that depends on the shape of the CDF itself. In

contrast, adding a bonus directly to the empirical CVaR is agnostic of the CDF structure, and relies

only on the number of samples observed. To gain some geometric intuition for the superiority of

our method, consider a distribution where the probability mass in the low-reward tail is clustered

around a single point. In this scenario, one would hope to estimate the CVaR quite quickly as

the tail variance [Valdez, 2004] is small, and indeed the lowest α fraction of optimistic samples will

be almost unchanged by our optimistic perturbation. Figure 2.7 illustrates this by looking at the

optimistic CVaR estimates generated for two different distributions.

Cassel et al. [2018] show that their U-UCB approach achieves a problem-dependent “proxy regret”

bound of order O
(
U2 logn/α2

)
which matches our bound above.(To be exact, the proxy regret as

presented in Cassel et al. [2018] is not a cumulative notion, and thus the bound is presented as

O
(
U2 logn/α2n

)
, with an additional n present in the denominator. For clarity’s sake, we deal with

the cumulative version here.) Note however that their proxy regret is potentially a slightly less

standard notion of regret. While we show in Appendix A.3.3 that it is an upper bound on our

CVaR-regret, our CVaR-regret is amenable to a simpler analysis and is still a good measure of the

algorithm’s performance; e.g., to achieve sub-linear CVaR-regret the algorithm needs to play the

optimal arm more and more frequently. However, to rule out the possibility that our algorithm’s

superior performance is due to the use of a different objective, Proposition 2 shows that CVaR-

UCB achieves the same dependency on α and n as U-UCB, even when evaluating on proxy regret.

We further illustrate the benefits of our approach over direct bonuses by devising a variant of
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U-UCB with even better dependence on risk level α. This algorithm, Brown-UCB, leverages a CVaR

concentration inequality from Brown [2007] to compute a bonus. We show in the Appendix A.3.2

that its problem-dependent CVaR-regret grows at O
(
U2 logn/α

)
. Similar to Thomas and Learned-

Miller [2019]’s observation in the concentration inequalities setting, we will soon see that while

our direct bonus approach has a slightly improved dependency on the risk level compared to the

CVaR-UCB above, the latter’s empirical advantages can be significant, highlighting the practical

significance of leveraging the specific CDF structure when computing a bonus.

Proposition 2. Consider a stochastic K-armed bandit problem with rewards bounded in [0, U ]. For

any given horizon n and risk level α, both CVaR-UCB and U-UCB incur proxy regret with O( logn
n )

and O(1/α2) dependency on the horizon and risk level, respectively.

2.7.4 Empirical Evaluations

We present a series of experiments demonstrating the superior performance of our algorithm across

several types of distributions and numbers of arms.

Truncated Normal Environments First, we present results on 3-armed truncated-normal ban-

dits with varying risk levels and CVaR-regret gaps. We compare our CVaR-UCB with four others:

1. an ε-greedy algorithm, which chooses a random arm with probability ε = 0.1, and otherwise

the arm with highest empirical CVaR.

2. the CVaR best-arm identification algorithm from Kolla et al. [2019].

3. the U-UCB algorithm from Cassel et al. [2018].

4. a variant of U-UCB called Brown-UCB presented in Appendix A.3.2

In each distribution, the arms correspond to truncated normal distributions with different means

and variances. The parameters of these distributions, along with their CVaRs, are shown in Table 2.2.

The difference between the Easy and Hard environments is that the arms in the Hard environment

feature a smaller difference between their CVaR values compared to those in the Easy environment.

We also assess our algorithm’s performance on two runs of the Hard environment with different

levels of α. Note that we began each experiment by pulling each arm d1/αe times to ensure there

are enough samples so that the empirical CVaR is properly defined.

The results in Figure 2.8 show that the CVaR-regret of our algorithm is an order of magnitude

lower than the reward bonus-based algorithms we compared against (note the log-scale). Further-

more, as expected, the cumulative-CVaR regret of our algorithm grows logarithmically, as expected.

This is in contrast to the linear growth of ε-greedy and Kolla et al. [2019], which was not designed

for regret minimization.
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Environment Arm 1 Arm 2 Arm 3

Easy, α = 0.25 3.18 9.32 -1.02
Hard, α = 0.25 6.59 9.32 6.91
Hard, α = 0.05 4.91 6.52 2.43

Parameter Arm 1 Arm 2 Arm 3

Easy & Hard µ 10 15 16
Easy σ 6 5 15
Hard σ 3 5 8

(a) (b)

Table 2.2: Setup for the Three-Arm Multi-Arm Bandit Environments. (a) CVaR values of different
arms in our simulations. In all cases, Arm 2 (bolded) has the highest CVaR. (b) Means and standard
deviations for each arm for the Easy and Hard environments. All distributions were truncated at
±1σ.

(a) (b) (c)

Figure 2.8: Cumulative CVaR-regret of CVaR-UCB (green; our algorithm), ε-greedy (purple), Cassel
et al. [2018]’s U-UCB (orange), Brown-UCB Brown [2007] (blue), and Kolla et al. [2019]’s successive
rejects algorithm (red) for different bandit setups. While the arm bonuses in rightshifting algorithms
are only dependent on the number of samples gathered, the those in DKW-UCB depend further on
the particular values of those samples, leading to larger variance than the other algorithms. Means
and 95% confidence intervals shown for fifteen runs, with δ = 10−4. Y-axis has log scale. (a) Easy
Bandit with α = 0.25 (b) Hard Bandit with α = 0.25 (c) Hard Bandit with α = 0.05

Comparison against a Tuned ε-Greedy Baseline In practice, the parameters used for ε-greedy

can have a substantial impact on its performance. For example, in the risk-neutral case, knowledge

of the optimality gaps can be leveraged to create an decaying ε-greedy algorithm with logarithmic

regret growth [Bietti et al., 2018]. Thus, to demonstrate the practical relevance of our algorithm,

it is important to check that finding a successful decay schedule for ε-greedy is not easy. Thus, we

introduce the Bernoulli Bandit environment, which is designed to penalize algorithms which explore

either too little or too much. In addition to comparing against our algorithm, we also compare

against the U-UCB algorithm from Cassel et al. [2018].

The environment consists of two arms: a deterministic arm that always returns 0.1 reward, and

a stochastic that returns reward 1 with probability 0.8 and returns 0 otherwise. The CVaR0.25 of

the stochastic arm is 0.2, compared to 0.1 for the deterministic arm. This environment highlights an

algorithm’s shortcomings in handling exploration: an suboptimal algorithm will either not explore

enough and settle for the inferior deterministic arm, or explore for too long and incur large CVaR-

regret. We ran a decaying ε-greedy algorithm with a range of exponential decay constants spanning
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(a) (b)

Figure 2.9: (a) Cumulative CVaR-regret of our algorithm (green), ε-greedy (blue), and Cassel et al.
[2018]’s U-UCB (red) on the Bernoulli Bandit environment. The ε-greedy algorithm was run with
a wide range of starting epsilons and decay constants. Results averaged over 15 runs. Y-axis has
log scale. (b) Cumulative CVaR-regret of our algorithm on the One Good Arm environment for
different numbers of arms. Values were collected after 3500 pulls and averaged over 15 runs.

from 10−1 to 10−6 and initial epsilons ranging from 1 to 10−3.

The results of our experiments are shown in Figure 2.9 (a), and show that all algorithms incur

at least an order of magnitude higher cumulative CVaR-regret than ours. Note that the successive

rejects algorithm requires upper and lower bounds of the CVaR-regret gaps between the optimal

arm and all other arms. To ensure as favorable a comparison as possible, we provide the tightest

possible bounds based on the true CVaRs of the arms.

Dependence on Number of Arms We also performed an empirical evaluation of our algorithm’s

dependence on number of arms K in an environment called One Good Arm. In Figure 2.9 (b), we

plot the cumulative CVaR-regret of our algorithm and Cassel et al. [2018]’s U-UCB after 3500 pulls

for various values of k. The empirical results show what our bound predicts: the CVaR-regret grows

linearly with number of arms K. Moreover, our algorithm continues to significantly outperform

U-UCB as the number of arms increases.

The One Good Arm environment consists of one normal distribution with mean 0 and variance 1

(CVaR0.25 ≈ −0.703), and the rest of the arms with mean 0.1 and standard deviation 10 (CVaR0.25 ≈
−6.928). Distributions were truncated at ±1σ.

2.8 Related Work

Optimizing policies for risk sensitivity in MDPs has been long studied, with policy gradient [Tamar

et al., 2015b,a], actor critic [Tamar and Mannor, 2013] and TD methods [Tamar and Mannor,

2013, Sato et al., 2001]. While most of this work considers mean-variance trade objectives, [Chow
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et al., 2015] establish a connection between a optimizing CVaR and robustness to modeling errors,

presenting a value iteration algorithm.

In contrast, we do not assume access to transition and rewards models. [Chow and Ghavamzadeh,

2014] present a policy gradient and actor-critic algorithm for an expectation-maximizing objective

with a CVaR constraint. None of these works considers systematic exploration but rely on heuristics

such as ε-greedy or on the stochasticity of the policy for exploration. Instead, we focus on how to

explore systematically to find a good CVaR-policy.

Our work builds upon recent advances on distributional RL [Bellemare et al., 2017, Rowland

et al., 2018, Dabney et al., 2018] which are still concerned with optimizing expected return. Notably,

[Dabney et al., 2018] aims to train risk-averse and risk-seeking agents, but does not address the

exploration problem or attempts to find optimal policies quickly.

Dilokthanakul and Shanahan [2018] uses risk-averse objectives to guide exploration for good per-

formance w.r.t. expected return. [Moerland et al., 2018] leverages the return distribution learned in

distributional RL as a means for optimism in deterministic environments. Mavrin et al. [2019] follow

a similar pattern but can handle stochastic environments by disentangling intrinsic and parametric

uncertainty. While they also evaluate the policy that picks the VaR-greedy action in one experiment,

their algorithm still optimizes expected return during learning. In general, these approaches are fun-

damentally different from ours which learns CVaR policies in stochastic environments efficiently by

introducing optimism into the learned return distribution.

CVaR-Bandit Much work on risk-aware multi-armed bandits [Sani et al., 2012, Vakili and Zhao,

2016, Zimin et al., 2014, Vakili and Zhao, 2015] considers mean-variance objectives. We here consider

CVaR due to its advantage as a coherent risk measure [Artzner et al., 1999]. Galichet et al. [2013]

consider a CVaR-optimizing framework, but only analyze the case where α→ 0, which corresponds

to finding the arm distribution with the greatest essential infimum. In a pure exploration setting,

Kolla et al. [2019] consider the task of finding the arm with the optimal CVaR with a successive

rejects algorithm.

Outside the bandits framework, Brown [2007] and Thomas and Learned-Miller [2019] consider

the problem of quantifying the uncertainty of a CVaR estimate from a set of samples. Both present

concentration inequalities for CVaR, with the latter showing that the DKW inequality can provide

much tighter bounds in practice.

There has been very recent related work Cassel et al. [2018] for bandits with more general risk

measures. However, for learning CVaR bandit policies, their work relies on a more generic upper

confidence bound that works in the exploration bonus framework, whereas we apply optimism at

the sample level.
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2.9 Summary and Conclusion

We present a new algorithm for quickly learning CVaR-optimal policies in Markov decision processes.

This algorithm is the first to leverage optimism in combination with distributional reinforcement

learning to learn risk-averse policies in a sample-efficient manner. Unlike existing work on expected

return criteria which rely on reward bonuses for optimism, We introduce optimism by directly mod-

ifying the target return distribution and provide a theoretical justification that in the evaluation

case for finite MDPs, this indeed yields optimistic estimates. We further empirically observe signifi-

cantly faster learning of CVaR-optimal policies by our algorithm compared to existing baselines on

several benchmark tasks. This includes simulated healthcare tasks where risk-averse policies are of

particular interest: HIV medication treatment and insulin pump control for diabetes type 1 patients.

In Bandit setting, We present distributionally-aware optimism as a simple and effective way to

reap the benefits of optimism in risk-sensitive multi-armed bandits. We provide theoretical results

matching state-of-the-art and empirical results showing that our algorithm achieves an order-of-

magnitude lower CVaR-regret than exploration bonus-based alternatives and other baselines. In

the future, we aim to expand our analysis to contextual linear bandits, which capture the high-

dimensionality and individualized treatment desired in many applications, including healthcare.



Chapter 3

Off-Policy Policy Evaluation Under

Unobserved Confounding

When observed decisions depend only on observed features, off-policy policy evaluation (OPE) meth-

ods for sequential decision problems can estimate the performance of evaluation policies before

deploying them. However, this assumption is frequently violated due to unobserved confounders,

unrecorded variables that impact both the decisions and their outcomes. We assess robustness of

OPE methods under unobserved confounding by developing worst-case bounds on the performance

of an evaluation policy. When unobserved confounders can affect every decision in an episode, we

demonstrate that even small amounts of per-decision confounding can heavily bias OPE methods.

Fortunately, in a number of important settings found in healthcare, policy-making, and technology,

unobserved confounders may directly affect only one of the many decisions made, and influence fu-

ture decisions/rewards only through the directly affected decision. Under this less pessimistic model

of one-decision confounding, we propose an efficient loss-minimization-based procedure for comput-

ing worst-case bounds, and prove its statistical consistency. On simulated healthcare examples—

management of sepsis and interventions for autistic children—where this is a reasonable model, we

demonstrate that our method invalidates non-robust results and provides meaningful certificates of

robustness, allowing reliable selection of policies under unobserved confounding.

3.1 Introduction

New technology and regulatory shifts have allowed the collection of vast amounts of data on se-

quential trajectories of past decisions and associated rewards, ranging from healthcare decisions and

outcomes to product recommendations and purchase histories. This presents unique opportunities

for using off-policy methods to inform better sequential decision-making. Leveraging prior data to

33
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evaluate the performance of a sequential decision policy (which we call the evaluation policy) before

deploying it can reduce the need for online experimentation when doing so is expensive or risky.

A central challenge in off-policy policy evaluation (OPE) is that the estimand is inherently

counterfactual: what would the rewards be if an alternate policy had been used (the counterfactual)

instead of the behavior policy that generated the observed data (the factual). As a result, OPE

requires causal reasoning about whether observed rewards were caused by observed decisions, or by

a common causal variable that simultaneously affects observed decisions and states / rewards [Hernán

and Robins, 2020]. In order to make counterfactual evaluations possible, a standard assumption—

albeit often overlooked and unstated—is to require that the behavior policy does not depend on any

unobserved variables that also affect the future states/rewards (no unobserved confounding). We

refer to this assumption as sequential ignorability, following the line of works on dynamic treatment

regimes [Robins, 1986, Murphy, 2003].

Sequential ignorability, however, is often violated in OPE problems where the behavior policy is

unknown. In medicine, business operations, and automated systems in tech, decisions depend on un-

logged features correlated with future outcomes. As an example, clinicians use visual observations

or discussions with patients to inform treatment, but such information is typically not recorded;

they also may rely on heuristics that are hard to quantify, and can over-extrapolate from past

experience [McDonald, 1996]. In judicial decisions, psychological factors affect bail and parole deci-

sions [Dhami, 2003, Danziger et al., 2011]. Heuristics are prevalent in business contexts, for example

in venture capital investments [Åstebro and Elhedhli, 2006], and customer targeting [Wübben and

Wangenheim, 2008]. Even automated policies in tech firms depend on unlogged features [Agarwal

et al., 2016], and complex software and data infrastructures often introduce confounding.

In this chapter, we study a framework for quantifying the impact of unobserved confounders

on OPE estimates, developing worst-case bounds on the performance of an evaluation policy. OPE

estimates are often used to inform policy selection, and we are particularly interested in methods that

can guide when we may be confident (or not) that an alternate decision policy should be preferred.

Since OPE is generally impossible under arbitrary unobserved confounding, we begin by positing a

model that explicitly limits their influence on decisions. Our proposed model is a natural extension

of an influential confounding model for a single binary decision Rosenbaum [2002] to the multi-

action sequential decision making setting. When unobserved confounders can affect all decisions,

we illustrate in Section 3.4 that even small amounts of confounding can have an exponential (in

the number of decisions) impact on the bias of OPE. In this sense, the accuracy of OPE can be

highly unreliable under the presence of unobserved confounding that affect all decisions in multi-step

horizon problems.

Fortunately, in a number of important applications, unobserved confounders may only directly

affect a single decision, and influence future decisions/rewards only through this directly affected

decision. As we detail shortly, in healthcare this happens when a high-level expert makes an initial
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decision potentially using unrecorded information, after which a standard set of protocols are followed

based on recorded inputs. In financial services, this happens when humans initially screen new

clients for fraud, after which decisions are made based on standard logged features. For online

services, personalized systems can adapt to individual users given enough data, but an initially

poor experience leads users to stop using the service before the system can learn [Hashimoto et al.,

2018]. Demographic characteristics—many of which are unobservable to typical online services—can

significantly affect initial performance [Amodei et al., 2016, Grother et al., 2010, Hovy and Søgaard,

2015, Blodgett et al., 2016, Sapiezynski et al., 2017, Tatman, 2017], and is an important unobserved

confounder. In these scenarios, future outcomes typically depend on unseen demographics only

through the initial engagement levels, in that the availability of individualized data can improve

the personalized system’s subsequent performance. In order to evaluate new policies (e.g. fully

automated systems), we need to account for unobserved confounding in the initial human-conducted

screening decisions; in this scenario, the unobserved features affect subsequent decisions and rewards

only through the initial decision and outcome. In other instances, it may be the case that an

unobserved confounder at a particular time step is observed in the next period.

Under our less pessimistic model of single-decision confounding, we develop bounds on the ex-

pected cumulative rewards under the evaluation policy. We use functional convex duality to derive

a dual relaxation, and show that it can be computed by solving a loss minimization problem. The

single-decision confounding model allows us to efficiently evaluate these bounds even for continu-

ous states, unlike the general case which requires solving an intractable nonconvex problem over

likelihood ratios (which are infinite dimensional for continuous states). We prove the empirical

approximation of our procedure is consistent, allowing estimation from observed past decisions.

The single-decision confounding model may not fully describe scenarios where unobserved con-

founders affect decisions through multiple periods. Our sensitivity analysis method is nevertheless

a meaningful tool even in such scenarios, as certifying the robustness of OPE against single-decision

confounding is a necessary condition for the conclusion of OPE to withstand multi-decision con-

founding. As we present in the sequel, we observe conclusions of OPE are often invalidated even

under less conservative single-decision confounding, raising substantial concern for robustness of

OPE under violations of sequential ignorability.

On examples of dynamic treatment regimes for autism and sepsis management, we illustrate

how our single-decision confounding model allows informative bounds over meaningful amounts of

confounding. Our approach provides certificates of robustness by identifying the level of unobserved

confounding at which the potential bias in OPE estimates raise concerns about the validity of

selecting the best policy among a set of candidates. Compared to our informative bounds, the näıve

approach is prohibitively conservative and lose robustness certificates for even negligible amounts of

confounding.
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3.2 Motivating example: managing sepsis patients

Sepsis in ICU patients accounts for one third of deaths in hospitals [Howell and Davis, 2017]. Sepsis

treatment decisions are made by a clinical care team, including nurses, residents, and ICU attending

physicians and specialists [Rhodes et al., 2017]. Difficulties of care often lead to decisions based on

imperfect information, and AI-based approaches provide an opportunity for automated management

of important medications for sepsis, including antibiotics and vasopressors. These approaches can

decide to notify the care team when a patient should be placed on a mechanical ventilator, freeing

the care team to allocate more time to critical cases. Motivated by these opportunities, and the

availability of data from MIMIC-III [Johnson et al., 2016], several AI-based approaches for sepsis

management have been proposed [Futoma et al., 2018, Komorowski et al., 2018, Raghu et al., 2017].

Due to safety concerns, new policies need to be evaluated offline before online clinical validation.

Confounding, however, is a serious issue in data generated from ICUs: patients in emergency de-

partments often do not have an existing record in the hospital’s electronic health system, leaving a

substantial amount of patient-specific information unobserved in subsequent offline analysis. As a

prominent example, comorbidities that significantly complicate the cases of sepsis [Brent, 2017] are

often unrecorded. Private communication with an emergency department physician revealed that

initial treatment of antibiotics at admission to the hospital are often confounded by unrecorded

factors that affect the eventual outcome. For example, comorbidities such as undiagnosed heart

failure can delay diagnosis of sepsis, leading to slower use of antibiotics. There is considerable dis-

cussion in the medical literature on the importance of quickly beginning antibiotic treatment, with

frequently noted concerns about confounding, as these discussions are largely based on observational

data [Seymour et al., 2017, Sterling et al., 2015].

We consider choosing between two automated policies that differ only in initially avoiding, or

prescribing antibiotics, and otherwise similarly improve current standard care. Antibiotics often are

viewed as a better treatment for sepsis. In this example, unobserved factors critically effect the

decision to prescribe antibiotics upon arrival; since the care team is highly trained, we assume they

follow standard protocols based on recorded measurements in subsequent time steps. In Section 3.6,

we assess the impact of confounding on OPE in this decision process with a single step of confounding.

3.3 Formulation

Notation conventions vary in the diverse set of communities interested in learning from (sequential)

observational data. We use the potential outcomes [Rubin, 2005] notation to make explicit which

sequence of actions we wish to evaluate versus which sequence of actions were actually observed. In

this approach, we posit all potential states and rewards exist for each possible sequence of actions,

but we only observe the one corresponding to the actions taken (also known as partial, or bandit

feedback), making the other potential states and rewards counterfactual. Literature in batch off
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policy reinforcement learning almost always assumes sequential ignorability, in which case the dis-

tribution of potential states and rewards are independent of the action taken by the behavior policy,

conditional on the observed history. This allows us to consistently estimate counterfactuals simply

based on observed outcomes. However, since our aim is to consider the impact of hypothetized

confounding, clarifying the difference between the potential and observed states and rewards is

cumbersome, but important.

We focus on domains modeled by episodic stochastic decision processes with a discrete set of ac-

tions. Let At be a finite set of actions available at time t = 1, .., T . Denote a sequence of actions a1 ∈
A1, .., aT ∈ AT by a1:T (and similarly at:t′ for arbitrary indices 1 ≤ t ≤ t′ ≤ T with a1:0 = ∅). For

any sequence of actions a1:t, let St(a1:t−1) be the continuous-valued vector of state features, includ-

ing previous rewards, Rt(a1:t) be the reward at time t, and the return Y (a1:T ) :=
∑T
t=1 γ

t−1Rt(a1:t)

be the discounted sum of rewards. We denote by W (a1:T ) = (S1, .., ST (a1:T−1), R1(a1), .., RT (a1:T ))

the sequence of all potential outcomes (over rewards and states) associated with the action sequence

a1:T . Any sum
∑
a1:T

over action sequences is over all a1:T ∈ A1 × · · · × AT .

In the off-policy setting, we observe actions A1, .., AT generated by an unknown behavior policy

π1, .., πT . Let Ht denote the observed history, with H1 := S1 and

Ht := (S1, A1, S2(A1), A2, .., St(A1:t−1)) for t ≥ 2.

For any fixed sequence of actions a1:t−1, denotes an instantiation of Ht following the action

sequence by Ht(a1:t−1) := (S1, A1 = a1, S2(a1), .., At−1 = at−1, St(a1:t−1)).

Let Ht be the set of all histories. When there is unobserved confounding Ut, the behavioral policy

draws actions At ∼ πt(· | Ht, Ut). Let πt(· | Ht) be the conditional distribution of At given only the

observed history Ht, marginalizing out the unobserved confounder Ut.

Our goal is to bound the performance of an evaluation policy π̄1, .., π̄T in a confounded se-

quential off-policy environment. Let Āt ∼ π̄t(· | H̄t) be the actions generated by the evaluation

policy at time t, where we use H̄t := (S1, Ā1, S2(Ā1), Ā2, .., St(Ā1:t−1)) and H̄t(a1:t−1) := (S1, Ā1 =

a1, S2(a1), Ā2 = a2, .., St(a1:t−1)) to denote the history under the evaluation policy, analogously to

the shorthands Ht, Ht(a1:t−1); note that H̄t are counterfactuals never observed in the behavioral

data. We are interested in estimation of the expected cumulative reward

V π̄ = E
[
Y (Ā1:T )

]
under the evaluation policy. Because we only observe potential outcomes W (A1:t) evaluated at the

actions A1:t taken by the behavior policy πt, we need to express E[Y (Ā1:T )] in terms of observ-

able data generated by the behavioral policy πt. To do so, we use the following definitions and

assumptions.

Assumption 1. Overlap holds with respect to the conditional distributions over actions given only
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the histories between the behavior policy and the evaluation policy. That is, πt(at | Ht) > 0 whenever

π̄t(at | H̄t) > 0, for all t and at, and almost every Ht.

Definition 1 (Sequential Ignorability). A policy satisfies sequential ignorability if ∀t, conditional on

the history generated by the policy, the action generated by the policy is independent of the potential

outcomes Rt(a1:t), St+1(a1:t), Rt+1(a1:t+1), .., ST (a1:T−1), RT (a1:T ) for all a1:T ∈ A1 × · · ·AT .

Sequential ignorability is a natural condition required for the evaluation policy to be well-defined:

any additional randomization used by the evaluation policy π̄t(· | H̄t) cannot depend on unobserved

confounders. We assume that the evaluation policy always satisfies this assumption.

Assumption 2. The evaluation policy satisfies sequential ignorability (Definition 1).

OPE fundamentally requires counterfactual reasoning since we only observe states St(A1:t−1) and

rewards Rt(A1:t) generated by the behavioral policy. The canonical assumption in batch off-policy

RL is that sequential ignorability holds for the evaluation and the behavior policy [Robins, 1986,

2004, Murphy, 2003]. For example, sequential ignorability allows the application of the standard

importance sampling formula using the observed data; we give its proof in Section B.2.1. To ease

notation, let

ρt :=
π̄t(At | H̄t(A1:t−1))

πt(At | Ht)
.

Lemma 1. If sequential ignorability holds for both π and π̄, then

E
[
Y (Ā1:T )

]
= E

[
Y (A1:T )

T∏
t=1

ρt

]

3.4 Bounds under unobserved confounding

Despite the advantageous implications, it is often unrealistic to assume that the behavior policy

πt satisfies sequential ignorability (Definition 1). If the unobserved confounder Ut, introduced in

Section 3.3, contains information about unseen potential rewards, then sequential ignorability doesn’t

hold.

We now relax the sequential ignorability of the behavior policy, and instead posit a model

of bounded confounding, then develop worst-case bounds on the evaluation policy performance

E[Y (Ā1:T )] under this model.

Without loss of generality, let the confounder Ut be such that the potential outcomes are indepen-

dent of At when conditioning on Ut alongside the observed states. Such an unobserved confounder

always exists since we can define Ut to be the tuple of all unseen potential outcomes.

Assumption 3. For all t = 1, .., T , there is a random vector Ut s.t. conditional on the history Ht

generated by the behavior policy and Ut, At ∼ πt(· | Ht, Ut) is independent of the potential outcomes

Rt(a1:t), St+1(a1:t), Rt+1(a1:t+1), .., ST (a1:T−1), RT (a1:T ) for all a1:T ∈ A1 × · · ·AT .
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Under arbitrary unobserved confounding, E[Y (Ā1:T )] is not identifiable, meaning that many

different values are consistent with the observed data. However, it is often plausible to posit that

the unobserved confounder Ut has limited influence on the decisions of the behavior policy. In such

a case, we may expect OPE estimates that (incorrectly) assume sequential ignorability may not be

too biased.

Consider the following model of unobserved confounding for sequential decision making problems,

which bounds confounder’s influence on the behavior policy’s decisions.

Assumption 4. For t = 1, .., T , there is a Γt ≥ 1 such that for any at, a
′
t ∈ At

πt(at | Ht, Ut = ut)

πt(a′t | Ht, Ut = ut)

πt(a
′
t | Ht, Ut = u′

t)

πt(at | Ht, Ut = u′
t)
≤ Γt (3.1)

almost surely over Ht, and ut, u
′
t, and sequential ignorability holds conditional on Ht and Ut.

The bound (Equation 3.1) is a natural extension of a classical model of confounding proposed

by Rosenbaum [2002] for a single decision (T = 1) to sequential problems. For binary actions

At = {0, 1}, our bounded unobserved confounding assumption is equivalent [Rosenbaum, 2002] to

the logistic model

log
P(At = 1 | Ht, Ut)

P(At = 0 | Ht, Ut)
= κ(Ht) + (log Γt)b(Ut)

for some function κ(·) and a bounded b(·) taking values in [0, 1].

In the sequential setting where T > 1, confounding can lead to exponentially large (in T ) over-

sampling of large (or small) rewards, introducing a large un-correctable bias. As an illustration,

consider the simplified setting where for a single unobserved confounder U ∼ Unif({0, 1}), behavioral

actions A1, . . . , AT ∈ {0, 1} are drawn conditionally on U , but independent of one another, with the

conditional distribution P(At = 1|U = 1) =
√

Γ/(1 +
√

Γ) and P(At = 1|U = 0) = 1/(1 +
√

Γ).

Let the return be Y (a1:T ) = U for all action sequences a1:T . Although the actions do not affect

the outcome, the likelihood of observing ((At = 1)Tt=1, Y = 1) is ΓT/2/(2(1 +
√

Γ)T ), whereas

the likelihood of observing ((At = 1)Tt=1, Y = 0) is 1/(2(1 +
√

Γ)T ). Even in the limit of infinite

observations, OPE will mistakenly estimate that always taking Āt = 1 leads to better rewards than

always taking Āt = 0. The effect of confounding is salient even in this toy example where states don’t

exist and rewards don’t depend on actions. This has important implications for off-policy policy

selection or optimization, where systematic biases can lead to selection of a poorly performing policy.

3.5 Confounding in a single decision

In many important applications, it is realistic to assume there is only a single step of confound-

ing at a known time step t∗. Under this assumption, we outline in this section how we obtain a

computationally and statistically feasible procedure for computing a lower (or upper) bound on the
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value E[Y (Ā1:T )] of an evaluation policy π̄. Robustness of the policy value with respect to this

class of confounding effects is also a necessary (although not sufficient) requirement for robustness

to confounding at multiple time steps, making this proposed method a valuable starting place for

evaluating the potential effects of confounding even if one believes that there may be confounding at

multiple times. After introducing precisely our model of confounding, we show in Proposition 3 how

the evaluation policy value can be expressed using likelihood ratios over potential outcomes that can

be used to relate the potential outcomes over observed (factual) actions with counterfactual actions

not taken. These likelihood ratios over potential outcomes are unobserved, but a lower bound on

the evaluation policy value can be computed by minimizing over all feasible likelihood ratios that

satisfy our model of bounded confounding. Towards computational tractability, we derive a dual

relaxation that can be represented as a loss minimization procedure.

We define the confounding model for when there is an unobserved confounding variable U that

only affects the behavior policy’s action at a single time t? ∈ [T ]. For example, in looking at the

impact of confounders on antibiotics in sepsis management, it is plausible to assume that while

confounders may influence the first decision when the patient arrives, later treatment decisions are

un-confounded.

Assumption 5. For all t 6= t?, conditional on the history Ht generated by the behavior policy, At is

independent of the potential outcomes Rt(a1:t), St+1(a1:t), Rt+1(a1:t+1), .., ST (a1:T−1), RT (a1:T ) for

all a1:T ∈ A1 × · · ·AT . For t = t?, there exists a random variable U such that the same conditional

independence holds only when conditional on the history Ht and U .

Restricting Assumption 4 to a single time step t∗, we assume U has bounded influence on At? .

Assumption 6. There is a Γ ≥ 1 such that for any at? , a
′
t? ∈ At? , and a.s. over Ht? , and u, u′

πt?(at? | Ht? , U = u)

πt?(a′t? | Ht? , U = u)

πt?(a′t? | Ht? , U = u′)

πt?(at? | Ht? , U = u′)
≤ Γ. (3.2)

Selecting the amount of unobserved confounding Γ is a modeling task, and the above confounding

model’s simplicity and interpretability makes it advantageous for modelers to argue a plausible

value of Γ. As in any applied modeling problem, the amount of unobserved confounding Γ should

be chosen with expert knowledge (e.g. by consulting doctors that make behavioral decisions). In

Section 3.6, we give application contexts where a realistic range of Γ can be posited. One of the most

interpretable ways to assess the level of robustness to confounding is via the design sensitivity of

the analysis [Rosenbaum, 2010]: the value of Γ at which the bounds on the evaluation policy’s value

crosses a landmark threshold (e.g. performance of behavior policy or some known safety threshold).

By directly applying the bound (Equation 3.2) to adjust importance weights, we obtain a simple

naive lower bound on the evaluation policy performance E[Y (Ā1:T )]. Details are in Section B.3.1.

Lemma 2. Let Assumptions 2, 5, 6 hold. Then, we have
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E[Y (Ā1:T )] ≥E

[
Y (A1:T )×

(
Γ1 {Y (A1:T ) < 0} (3.3)

+ Γ−11 {Y (A1:T ) > 0}
)
×

T∏
t=1

ρt

]
.

This bound is often prohibitively conservative, as we illustrate in Section 3.6. Instead we derive

a tighter bound on the evaluation policy performance based on a constrained convex optimization

formulation over counterfactual distributions. Under Assumption 6, the likelihood ratio between

observed and unobserved distribution at t? can at most vary by a factor of Γ. Recall that W (a1:T )

is the tuple of all potential outcomes associated with the actions a1:T . The following observation is

due to Yadlowsky et al. [2018, Lemma 2.1].

Lemma 3. Under Assumptions 5, 6, for all at? 6= a′t? , the likelihood ratio over the tuple of potential

outcomes W := {W (a1:T )}a1:T exists,

L(·;Ht? , at? , a
′
t?) :=

dPW (· | Ht? , At? = a′t?)

dPW (· | Ht? , At? = at?)

and for PW (· | Ht? , At? = at?)-a.s. for all w,w′,

L(w;Ht? , at? , a
′
t?) ≤ ΓL(w′;Ht? , at? , a

′
t?). (3.4)

We let L(·;Ht? , at? , at?) ≡ 1. Using these (unknown) likelihood ratios, we can express the value of

the evaluation policy, E[Y (Ā1:T )]. The proof is given in Section B.2.2.

Proposition 3. Under Assumptions 2, 5, 6, E[Y (Ā1:T )] is equal to

E[Y (Ā1:T )]=E

[
t?−1∏
t=1

ρt
∑

at? ,a
′
t?

π̄t?(at? |H̄t?(A1:t?−1))πt?(at? |Ht?)

×E
[
L(W ;Ht? , at? , a

′
t?)Y (A1:T )

T∏
t=t?+1

ρt

∣∣∣ Ht? , At? = at?
]]
,

Proposition 3 implies a natural bound on the evaluation policy value E[Y (Ā1:T )] under bounded

unobserved confounding. Since the likelihood ratios L(·; ·, at? , a′t?) are fundamentally unobservable,

due to their counterfactual nature we take a worst-case approach over all likelihood ratios that vary

by at most a factor of Γ (per Lemma 3), and derive a bound that only depends on observable distri-

butions. Taking the infimum over the inner expectation in the expression derived in Proposition 3,

and noting that it does not depend on a′t? ,

η?(Ht? ; at?) := inf
L∈L

E

[
L(W ;Ht?)Y (A1:T )

T∏
t=t?+1

ρt

∣∣∣ Ht? , At? = at?

]
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where L is the set of measurable mappings L : W ×Ht? → R+ satisfying L(w;Ht?) ≤ ΓL(w′;Ht?)

a.s. all w,w′, and E[L(W ;Ht?) | Ht? , At? = at? ] = 1. Since the above optimization is over infinite-

dimensional likelihoods, it is difficult to compute. We use functional convex duality to derive a dual

relaxation that can be computed by solving a loss minimization problem over any well-specified

model class. This allows us to compute a meaningful lower bound to E[Y (Ā1:T )] even when rewards

and states are continuous, by simply fitting a model using standard supervised methods. For (s)+ =

max(s, 0) and (s)− = −min(s, 0), define the weighted squared loss

`Γ(z) :=
1

2
(Γ(z)2

− + (z)2
+).

Theorem 3. Let Assumptions 2, 5, 6 hold. If

E[Y (A1:T )2
T∏

t=t?+1

ρ2
t | At? = at? , Ht? ] <∞

a.s., then η?(Ht? ; at?) is lower bounded a.s. by the unique solution

κ?(Ht? ; at?) = argmin
f(Ht? )

E

[
1 {At? = at?}
πt?(at? | Ht?)

× `Γ

(
Y (A1:T )

T∏
t=t?+1

ρt − f(Ht?)

)]
.

See Section B.3.2 for the proof. From Theorem 3, our final lower bound on E[Y (Ā1:T )] is given by

E
[ t?−1∏
t=1

ρt
∑
at?

π̄t?(at? |H̄t?(A1:t?−1))×

(1− πt?(at? |Ht?))κ?(Ht? ; at?) + πt?(At? |Ht?)Y (A1:T )

T∏
t=1

ρt

]
. (3.5)

Our approach yields a loss minimization problem for each possible action, where the dimension

of this supervised learning problem is that of the observed history Ht? . If confounding occurs very

late in a decision process sequence, the space of histories can be very large and this may incur a

significant computational cost. However If confounding occurs early, the space of possible histories

is small and this learning problem becomes easier. This is the scenario for the domains we consider

in our experiments. Compared to the non-sequential setting studied by Yadlowsky et al. [2018],

the sequential nature of our problem requires carefully adjusting for future actions, which shows

up as the product of importance weights inside the loss minimization problem. In the special case

when the last decision is confounded (t? = T ), our loss minimization formulation reduces to the

non-sequential result due to Yadlowsky et al. [2018]. The optimality results from their work would

then carry over to the method suggested here. However, when confounding occurs in any other
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decision besides the last, the relaxation from η∗ to κ∗ makes the bounds feasible to compute, yet

loose.

In cases where there is low, yet sufficient, overlap, weighted importance sampling (WIS) can

dramatically reduce variance, at the cost of increased bias, with respect to the usual IS estimator.

While our approach uses the IS to adjust for the differences between the behavior and evaluation

policy, adjusting the bound in (Equation 3.5) to use WIS, instead, is straightforward. Altering the

importance reweighting inside the loss function for κ? to be normalized, like WIS, warrants further

investigation.

Going beyond the single-decision confounding model (Equation 3.2) appears challenging both

computationally and statistically. Under the general confounding model (Equation 3.1), we can

formulate an optimization problem similar to that in Proposition 3 over multiple likelihood ratios

corresponding to each confounded decision. Due to the multiplicative structure of the likelihood

ratios, this is a nonconvex optimization problem, and convex duality does not apply. It is unclear

how to develop statistically and computationally tractable reformulations of this problem akin to

our loss minimization procedure, and we leave it as a topic of future research.

Consistency We now show that an empirical approximation to our loss minimization problem

yields a consistent estimate of κ?(·). We require the standard overlap assumption that requires ρt

be uniformly bounded for all t, that is, actions cannot be too rare under the behavior policy relative

to the evaluation policy.

Since it is not feasible to optimize over the class of all functions f(Ht?), we consider a param-

eterization fθ(Ht?) where θ ∈ Rd. We provide provable guarantees in the simplified setting where

θ 7→ fθ is linear, so that the loss minimization problem is convex. That is, we assume that fθ is

represented by a finite linear combination of some arbitrary basis functions of Ht? . As long as the

parameterization is well-specified so that κ?(Ht? ; at?) = fθ?(Ht?) for some θ? ∈ Θ, an empirical

plug-in solution converges to κ? as the number of samples n grows to infinity. We let Θ ⊆ Rd be

our model space; our theorem allows Θ = Rd.
In the below result, π̂t(at | Ht) is a consistent estimator of πt(at | Ht) trained on a separate i.i.d.

dataset Dn; such estimators can be trained using sample splitting and standard supervised learning

methods. Define the set Sε of ε-approximate optimizers of the empirical plug-in problem

min
f(Ht? )

Ên

[
1 {At? = at?}
π̂t?(at? | Ht?)

`Γ

(
Y (A1:T )

T∏
t=t?+1

ρ̂t − f(Ht?)

)]

where Ên is the empirical distribution of the separate data, and

ρ̂t :=
π̄(At | H̄t(A1:t−1))

π̂t(At | Ht(A1:t−1))
.
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We assume we observe i.i.d. episodes, and that episodes (unit) do not effect one another, so the

observed cumulative reward is the potential outcome at the observed action sequence, Y (A1:T ).

See Section B.3.3 for the proof of the below result.

Theorem 4. Let Assumptions 2, 5, 6 hold, and let there be a C ∈ (1,∞) s.t. ∀t, ρt ≤ C a.s..

Let θ 7→ fθ be linear such that fθ?(·) = κ?(·, at?) for some unique θ? ∈ Rd. Let E|Y (A1:T )|4 < ∞,

and E[|fθ(Ht?)|4] < ∞ for all θ ∈ Θ. If for all t, π̂t(·|·) → πt(·|·) pointwise a.s., ρ̂t ≤ 2C, and

(2C)−1 ≤ π̂t?(at? |Ht?) ≤ 1 a.s., then lim infn→∞ dist(θ?, Sεn)
p→ 0 ∀εn ↓ 0.

Hence, under the hypothesis of Theorem 4, a plug-in estimator is consistent for the lower

bound (Equation 3.5).

3.6 Experiments

We now illustrate how our approach can generate meaningful certificates of robustness to unobserved

confounding in realistic scenarios. We consider selecting evaluation policies using OPE methods,

such as comparing the expected performance of a new policy to an existing policy. We empirically

validate our method in sequential OPE problems where confounding is primarily an issue in only a

single decision. Since counterfactual outcomes are only known in simulations, we focus on simulated

healthcare examples motivated by a real OPE application: management of sepsis patients. Since

this application uses discrete state space, we present another example with continuous-valued states:

developmental interventions for autistic children, where using standard OPE methods result in wrong

identification of the optimal policy. Our results demonstrate scalability of our loss minimization

approach in both discrete and continuous settings, as well as short and medium horizons (5 ∼ 10).

We observe that beyond 10 time steps, overlap becomes a problem, and statistical estimation becomes

challenging.

3.6.1 Managing sepsis for ICU patients

As outlined in Section 3.2, automated policies hold much promise in management of sepsis in ICU

patients. However, ICU observational data about sepsis patients may often lack information about

important confounders, such as important unrecorded comorbidities that affect a clinician’s initial

decision whether to administer antibiotics. In subsequent time steps, we assume the (highly-trained)

clinical care team follows standard protocols based on vitals signs and lab measurements, and hence

their subsequent decisions are unconfounded. On the sepsis simulator developed by Oberst and

Sontag [2019], we illustrate how such confounders can bias OPE methods, and demonstrate that our

worst-case approach can allow reliable selection of candidate policies under confounding.

We consider a scenario where automated policies have been proposed using existing medical

knowledge, and we wish to evaluate their benefits relative to the current standard of care. We
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evaluate three different policies, all of which only differ in their initial prescription of antibiotics, and

otherwise act optimally. The first policy, without antibiotics (WO), does not administer antibiotics

initially, whereas the second policy, with antibiotics (W), always administers antibiotics initially. For

our last policy, we follow Oberst and Sontag [2019] and use the optimal policy learned by running

policy iteration on this simulator—naturally this procedure does not have confounding. We stress

that our first two policies are identical to the optimal policy after the initial time step. The true

performance of the with antibiotics (W) and optimal policy is quite similar, and better than the

without antibiotics (WO) policy (see Figure 3.1).

Simulator Oberst and Sontag [2019]’s simulator state space consists of a binary indicator for

diabetes, and four vital signs {heart rate, blood pressure, oxygen concentration and glucose level}
that take values in a subset of {very high, high, normal, low, very low}; size of the state space is

|St| = 1440. There are three binary treatment options {antibiotics, vasopressors, and mechanical

ventilation} (|At| = 23). In our experiments, simulation continues either until at most T = 5

(horizon) time steps, death (reward -1), or discharge (reward +1). Patients are discharged when all

vital signs are in the normal range without treatment. Patients die if at least three vitals are out of

the normal range. We refer the reader to https://github.com/clinicalml/gumbel-max-scm for

details regarding the simulator.

The optimal policy Recall that we assume that the decisions are made near-optimally. To learn

the optimal policy, we generate 2000 samples for each transition and constructed the transition

matrix P (s, a, s′) and the reward matrix R(s, a, s′) of the MDP. Similar to Oberst and Sontag [2019]

we used policy iteration to learn the optimal policy. We create a near-optimal (soft optimal) policy

by having the policy take a random action with probability 0.05, and the optimal action with

probability 0.95. The value function (for the optimal policy) was computed using value iteration.

The horizon is T = 5 and the discount factor γ = 0.99, which results in soft optimal policy having

an average value (over the possible distribution of state states) of 0.14.

Confounding We injected confounding in the first decision of this simulation by defining two

different policies: with antibiotics and without antibiotics. with antibiotics which is identical to the

soft optimal policy except that the probability mass of actions without antibiotics is moved to the

corresponding action with antibiotics. For example, if the probability of the action a1 =(antibiotics

on, vasopressors off, ventilation on) in the soft optimal policy is p1, and a′1 =(antibiotics off, vaso-

pressors off, ventilation on) is p′1, then in the with antibiotics a1 has probability p1 + p′1 and a′1 has

probability zero in this new policy. The “without antibiotics” does the opposite: moves probability

mass of actions with antibiotics to the corresponding action without antibiotics. In our confounding

scenario, for healthy patients we administer antibiotics (i.e. follow the “with antibiotics”) policy

with a higher probability (w.p.
√

Γ
1+
√

Γ
). For unhealthy patients, we administer antibiotics with a

https://github.com/clinicalml/gumbel-max-scm
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lower probability (w.p. 1
1+
√

Γ
).

Concretely, to compute the transition from a state conditional on an action, we do inverse

transform sampling: we generate a uniform random variable Ut on [0, 1], and use this to index

into the transition probability distribution for the next state, sorted by the states’ value function

and current reward. This coupling ensures that if Ut is large, then the next state will have a high

value, and if Ut is small, then the next state will have a low value. The hidden variable U used

for confounding in the first decision is U =
∑T
t=1 Ut, which serves as a surrogate for the health of

patient, because the larger U is, the more likely the patient is to have improving state values. We

choose a threshold u0, and if U > u0, the behavior policy follows the action with antibiotics, and if

U ≤ u0, the behavior policy follows the action without antibiotics, thus introducing confounding.

After the first decision, the behaviour policy is a mixture of two policies: 85% the soft optimal

policy and 15% of a sub-optimal policy that is similar to the soft optimal but the vasopressors action

is flipped. For example, if probability of the action a1 =(antibiotics on, vasopressors off, ventilation

on) is p1, and a′1 =(antibiotics on, vasopressors on, ventilation on) in p′1 in the soft optimal policy,

then the sub-optimal has probability p′1 and p1 for action a1 and a′1, respectively.

Loss minimization Since the state and action space are discrete, we learn the tabular value

κ(s, a) for each state action pair separately to minimize the empirical loss. Additionally, in order to

compute the upper bound of both ours and the naive method, we compute the negative of the lower

bound on the negative of return (cost).

Behaviour Policy We estimate the behaviour policies from the data in two parts: the first time

step and time steps t = 2 through t = 5. By the assumptions stated above, each of these policies

depends only on the previous state, and we learn the tabular probability of each state action pair

πt(a|s) separately.

Results We first consider when our approach happens to use the same confounding degree as what

is present in the simulator, Γ = Γ?. Figure 3.1 plots the value of the three evaluation decision policies

estimated using the data generated with Γ? = 2.0, which is a fairly small amount of confounding.

Confounding leads standard OPE methods that assume sequential ignorability for the behavior

policy to underestimate the peformance of the without antibiotics (WO) policy, and overestimate

the performance of the with antibiotics (W) and optimal policies. This inflates the expected benefit

of the W and optimal policies compared to the WO policy.

The naive approach (Equation 3.3) results in very wide estimated intervals over the potential

policy performance, and therefore cannot be used to reliably infer the superiority of W and optimal

policy over WO even when Γ = 2.0. On the other hand, our proposed method certifies the robustness

of the benefit of immediately administering antibiotics; our lower bounds on the performance of the

W and optimal policies are better than the upper bound on the performance under the WO policy.
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Figure 3.1: data was generated using Γ? = 2.0. Each policies’ true value is shown with a start
and a standard OPE estimate (ignoring confounding) is shown with an empty circle. Black lines
show the estimated upper and lower bound on policy performance using our approach and red lines
correspond to the naive approach, both using Γ = 2.0. Dashed lines represents 95% quantile.

We next consider a much larger amount of confounding, generating the observational data with

Γ? = 5.0. To explore the design sensitivity of our method and our naïıve lower bound approach,

we use a range ofΓ values in our method. Figure 3.2 (a) and (b) shows that for our method,

the lower bound on the performance of the W policy meets the upper bound on that of the WO

policy at Γ = 5.6. In other words, our approach can reliably estimate that the W policy is better

than the WO policy up to assuming an amount of confounding determined by Γ = 5.6 when the

true Γ? = 5.0. In contrast, our proposed naive bound (Equation 3.3) has a a design sensitivity of

Γ = 1.75, meaning the bounds quickly fails to be informative far below the true amount of data

confounding. Our method allow concluding that the W policy is superior to the WO policy even

when a substantial amount of unobserved confounding exists in the initial decision. We present

another design sensitivity experiment, with Γ
?

= 1.0. Figure 3.3 (a,b) shows design sensitivity of

our method (1.7) versus the naive method (1.23).

3.6.2 Communication interventions for minimally verbal children with

autism

In this section, we consider another motivating scenario from healthcare, but one which naturally

involves continuous variables to demonstrate that our approach is also able to compute reasonable

lower bounds for such a case, while using function approximation.

Minimally verbal children represent 25-30% of children with autism, and often have poor prog-

nosis in terms of social functioning [Rutter et al., 1967, Anderson et al., 2009]. We are interested

in comparing non-adaptive versus adaptive approaches that aim to improve spoken communication,

measured by the number of speech utterances. We introduce confounding using a simulator for
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(a) Design sensitivity: ours (b) Design sensitivity: naive

Figure 3.2: Panels (a) and bc) plot design sensitivity. Data was generated with Γ? = 5. Estimated
lower and upper bound of two policies (with and without antibiotics) under (a) our approach with
design sensitivity 5.6, and (b) naive approach with design sensitivity 1.75.

(a) Design sensitivity: ours (b) Design sensitivity: naive

Figure 3.3: Sepsis simulator design sensitivity. Data generation process with level of confounding
Γ? = 1.0. Estimated lower and upper bound of two policies (with and without antibiotics) under
(a) our approach with sensitivity 1.7 (b) naive approach with sensitivity 1.23.

autistic children developed by Lu et al. [2016], which models the data from a (real) sequential, mul-

tiple assignment, randomized trial (SMART) [Kasari et al., 2014]. Despite their randomized trial,

Kasari et al. [2014] note that very few randomized trials of these interventions exist, and the number

of individuals in these trials tends to be small. It is therefore reasonable to think that in similar

settings it would be beneficial to use existing off-policy data to evaluate new intervention protocols.

In the simulator there are two developmental interventions (actions): behavioral language in-

terventions (BLI) delivered by a therapist, and an augmented/alternative communication (AAC)

approach implemented with a speech generation device. There are two decision points in the data

generation process: week 0 and week 12. Number of speech utterances are measured at week 0, 12,

24 and 36: note that the action / intervention applied at week 12 persists from week 12 to the end
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of the process, which means this is a 2 time step decision problem. Here the outcome is modeled as

a continuous variable representing the average number of speech utterances for a given patient.

We consider a scenario where participants were recruited and randomly assigned to the two

treatment options initially (i.e., A1 ∼ Unif({BLI,AAC})), and a recourse action is taken after a

follow-up visit after 12 weeks. Depending on the progress of patients at Week 12, the clinician decides

whether to switch to AAC devices for children who started with BLI. Since this intervention requires

a specialized device—whose supply is limited—it is likely that the clinicians assign AAC devices for

whom it has a higher chance of being effective. Such subjective assessments are likely based on

the their interaction with patients that contain partial, noisy information about the final outcome,

which are often not recorded properly. Therefore, while there is confounding in the second decision

(t? = 2), its influence may be appropriately bounded (i.e., Assumption 5 is plausible). To simulate

confounding, we expand the simulator to create variables that partially influences the effectiveness

of switching from BLI to AAC, and use knowledge of this to alter the behavior policy decisions at

Week 12. The resulting confounding satisfies our model of bounded confounding (Assumption 5).

In our evaluations, we compare an adaptive policy (BLI + AAC) that starts with BLI, and

augments BLI with AAC at week 12 if the patient is a slow responder, against a non-adaptive policy

that uses AAC through the whole treatment. We simulate two different settings where the effect of

switching to the AAC treatment varies; our simulation parameters are within the suggested range of

Lu et al. [2016]’s recommendations based on the SMART trial data. We note that OPE estimates for

the non-adaptive policy (AAC) is unbiased since observations for this outcome are unconfounded.

Our loss minimization for computing the lower bound using κ(at? , Ht?) is done using a 4 layers

neural network with Relu activations, we use backpropogation with AdamOptimizer and weighted

squared loss given in Theorem 3. We use logistic regression to estimate the behavior policy, note

that this is the marginalized behavior policy since the latent confounder is unobserved.

Details of experiments In the autism experiments, our data generation process (simulator) is

adopted from Lu et al. [2016, Appendix B]. Each individual has a set of covariates X, consisting

of six mean-centered features: {age, gender, indicator of African American, indicator of

Caucasian, indicator of Hispanic, indicator of Asian}. The Autism SMART trial Kasari

et al. [2014] simulator specifies a set of 300 individuals: to obtain a sample size N , we sample

with replacement from this set. For details on the simulator, we refer to Appendix B of Lu et al.

[2016]. At the first timestep there are two actions available A1 ∈ {−1, 1}, where A1 = 1 denote BLI,

and A1 = −1 denote AAC. At the second timestep there are three actions A2 ∈ {−1, 0, 1}, where

A2 = 1 denote assigning intensified BLI to slow responders, A2 = −1 denote assigning AAC to slow

responder and A2 = 0 denote continuing with the same action for fast responders.

Confounding The original simulator did not have confounding. We now describe how we intro-

duce confounding in this setting. Lu et al. [2016, Appendix B] specifies the effect of the second
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(a) Case I (b) Case II

Figure 3.4: Autism simulation. Outcome of two different policies, confounded adaptive policy
(BLI+AAC) and un-confounded non-adaptive policy (AAI). Data generation process with the level
of confounding Γ? = 2.0.

Figure 3.5: Autism simulation design sensitivity. Data generation process with the level of con-
founding Γ? = 1.0. True value of adaptive (BLI+AAC) and non-adaptive (AAC) policies along with
estimated lower bound on outcome using our and naive approach with sensitivity 2.28 and naive
approach with sensitivity 1.28

action (whether to augment BLI with AAC) on the reward outcome Y as follows:

Y = ηT31X + η22Y0 + ηT33A1 + η34Y12 − 2θ(1−R)(A1 + 1)A2 + ε.
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A1 is either −1 or 1. Therefore the final term (outside of the noise ε) is non-zero only when A1 = 1,

and we can interpret θ as the effect size of the adaptive policy (which always takes A1 = 1); for

exact definition of the effect size refer to Lu et al. [2016]. For those more familiar with the RL

literature, it is related to the advantage function. In the original paper, Figure 7 in Lu et al. [2016]

were generated using 4 different values of θ. The parameters used in these simulations are in the

range reported by Lu et al. [2016].

We introduce confounding by varying θ (thereby impacting the potential outcome) and then

altering the behavioral treatment decisions according to the knowledge of that θ. More precisely,

given a θ0, for each individual, we randomly set θ0 + σθ or θ0 − σθ. The second action is 1 with

probability
√

Γ
1+
√

Γ
if θ ≥ θ0 and 1 with probability 1

1+
√

Γ
if θ ≤ θ0. In our experiments, we take

σθ = 5.

Loss minimization To estimate κ(Ht? ; at?) in the loss minimization problem, we used a neural

network with 3 hidden layers of size {128, 128, 128, 64} with Relu activations, followed by a single

linear output layer. We initialize the layers with Xavier initialization and used the Adam optimizer

with learning rate 10−3. The input Ht is 10-dimensional consisting of 6 covariates, indicator of slow

responder, initial action A1, number of speech utterances after the initial action, and an interaction

term between A1 and the slow responder indicator.

Behaviour Policy We use logistic regression to estimate the behaviour policy from the observed

data: note that this is not the true behavior policy, because that depends on the (latent) confounding.

Different models were fit for the first and second time steps. For the first timestep the learned model

is π1(A1|H1), where H1 contains the observed X (6 covariates), and A1 ∈ {−1, 1}. For the estimated

behavior policy in the second timestep π2(A2|H2), H2 includes X (6 covariates), the action A1,

indicator of slow responder, the interaction term between A1 and the indicator, and the number of

speech utterances after the initial action.

Results In Case I, we define the parameters such that the adaptive policy (BLI+AAC) is worse

the non-adaptive policy (AAC) (lower true outcome / performance). As shown in Figure 3.4 (a),

standard OPE approach overestimates the outcome of the adaptive policy even given a mild level

of confounding Γ? = 2.0, and would incorrectly suggest the BLI+AAC policy outperforms the AAC

policy. On the other hand, our lower bounds on the adaptive policy computed using Γ = 2 (recall

the true confounding amount is unknown to our approach) suggest the OPE estimates may be biased

enough to affect conclusions; the observed advantages of the adaptive policy may be attributed solely

to unobserved confounding, even under reasonable values of confounding (Γ = 2).

In Case II, we change the parameters so that the BLI+AAC policy is better than the AAC policy,

and again use a true amount of confounding of Γ? = 2.0 in the data generation process. Standard

OPE estimates again overestimate the outcome for the BLI+AAC policy (Figure 3.4(b)). The naive
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lower bound results in a conservative lower bound that would again indicate no conclusions can be

drawn about the relative performance of BLI+AAC versus AAC. However, our method can certify

the superiority of the BLI+AAC policy when the level of confounding used in the computation of

the lower bounds is up to Γ = 4.2, thereby providing a case where our approach can provide useful

certificates of benefit of a new decision policy under non-trivial levels of confounding.

Figure 3.5 plots the design sensitivity of our method against the naive approach (Equation 3.3),

when there is in fact no confounding in the data generation process (Γ? = 1). Compared to the naive

approach (design sensitivity is Γ = 1.32), our method allows certifying robustness of the finding—

that the adaptive policy is advantageous—up to realistic levels of confounding (design sensitivity is

Γ = 2.78).

3.7 Related Work

The dynamic treatment regime literature [Robins, 1986, Murphy, 2003] addressed many early ques-

tions around using observational data for sequential decision making, and developed a rich set of

methods adapted for epidemiological questions. The reinforcement learning (RL) community is in-

creasingly interested in developing theory and methods for the related problem of batch RL across

a broad set of applications, because of new models and data availability (see e.g. [Thomas et al.,

2019, Liu et al., 2018b, Le et al., 2019, Thomas et al., 2015, Komorowski et al., 2018, Hanna et al.,

2017, Gottesman et al., 2019b]).

The majority of OPE methods for batch reinforcement learning rely on sequential ignorability

(though often unstated). There is an extensive body of work for off-policy policy evaluation and

optimization under this assumption, including doubly robust methods [Jiang and Li, 2015, Thomas

and Brunskill, 2016] and recent work that provides semiparametric efficiency bounds [Kallus and

Uehara, 2020]; often the behavior policy is assumed to be known. Notably, Liu et al. [2018b]

highlights how estimation error in the behavioral policy can bias value estimates, and Nie et al.

[2019], Hanna et al. [2019] provides OPE estimators based on an estimator of the behavior policy.

When sequential ignorability doesn’t hold, the expected cumulative rewards under an evaluation

policy cannot be identified from observable data. All of the above estimators are biased in the

presence of unobserved confounding, since neither the outcome model nor the importance sampling

weights can correct for the effect of the unobserved confounder.

The do-calculus and its sequential backdoor criterion on the associated directed acyclic graph

[Pearl, 2009] gives identification results for OPE. Like sequential ignorability, this precludes the

existence of unobserved confounding. Hence, methods that assume the sequential backdoor criterion

will be biased in their presence.

We study the effects of unobserved confounding on OPE in sequential decision making problems,

deriving bounds on the performance of the evaluation policy when sequential ignorability is relaxed.
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For problems where only one decision is made, a variety of methods developed in the econometrics,

statistics, and epidemiology literature estimate bounds on treatment effects and expected rewards.

Manski [1990] developed bounds that only assume bounded rewards, though they are too conserva-

tive to identify whether one action is superior to another. Then, Manski [1990] and other works posit

models that bound the effect of unobserved confounding on the outcome [Robins et al., 2000, Brum-

back et al., 2004], or—like ours—on the actions taken by the behavior policy [Cornfield et al., 1959,

Rosenbaum and Rubin, 1983, Imbens, 2003]. Recent work studied approaches that can apply to

heterogeneous treatment effects [Yadlowsky et al., 2018, Kallus et al., 2018], policy evaluation [Jung

et al., 2018], and policy optimization [Kallus and Zhou, 2018].

Tennenholtz et al. [2020] studied OPE for partially observable Markov decision processes (POMDPs)

and developed an identification strategy based on the independence structure of POMDP, similar

to single decision work of Miao et al. [2018]. We do not assume the existence of such variables or

independence structures and seek to develop a lower bound on OPE. This also distinguishes our work

from prior work which focuses on an algorithmic, scalable approach for when a single, time-invariant

confounder is present, and which does not seek to present bounds on the OPE [Lu et al., 2018].

In sequential settings, Zhang and Bareinboim [2019] derived partial identification bounds on pol-

icy performance with limited restrictions on the influence of the unobserved confounder on observed

decisions, much like the single decision work of Manski [1990], which they use to guide online RL al-

gorithms. Unfortunately, these bounds can be too conservative to guide selection of policies. Robins

et al. [2000], Robins [2004], Brumback et al. [2004] instead posit a model for how confounding in

each time step affects the outcome of interest and derive bounds under this model. Their work is

motivated by potential confounding in the effects of dynamic treatment regimes for HIV therapy on

CD4 counts in HIV-positive men. Our work is complementary to these in that we instead assume

limited influence of the unobserved confounder on the behavior policy’s actions.

Yadlowsky et al. [2018] takes a similar approach as ours to bound the effect of confounding on

treatment effects when there is only one action taken. Our approach allows for comparing sequences

of actions derived according to an evaluation policy, by adjusting for the way actions in all time steps

depend on the current states and history, and effect future states and rewards. One notable challenge

that only occurs in sequential problems is adjusting for actions that occur after the confounded

decision at time t?; these actions depend on the confounded decision through the history generated.

A natural approach is to individually bound the potential outcomes E[Y (Ā1:t?−1, at?:T )] for all at?:T ,

where each bound is given by a loss minimization problem. Under this approach—which is analogous

to that of Yadlowsky et al. [2018]—computing a lower bound to E[Y (Ā1:T )] requires
∏T
t=t? |At| loss

minimization problems, making it statistically and computationally intractable when t? is small (e.g.

t? = 1 in our sepsis example). Instead, we consider averaged outcomes E[Y (Ā1:t?−1, at? , Āt?+1:T )] in

Theorem 3, which allows us to obtain a lower bound on E[Y (Ā1:T )] by solving |At? | loss minimization

problems.
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3.8 Discussion

We proposed methods for analyzing the sensitivity of OPE methods to unobserved confounding in

sequential decision making problems. We demonstrated how our approach can certify robustness

of OPE in some settings, or raise concerns about its validity based on sensitivity to unobserved

confounding. Our loss minimization method allows computing worst-case bounds over our bounded

unobserved confounding model, while adjusting for observed features via importance sampling.

As a consequence, our estimators face the same challenges that standard importance-sampling-

based OPE methods face: high variance when there is little overlap between the evaluation and

behavior policy. In our experiments, importance sampling was effective since we ensured that there

was sufficient overlap and focused on shorter horizons. In other settings, lack of overlap poses

fundamental difficulties in off-policy evaluation, beyond issues with confounding, as others have also

noted [Gottesman et al., 2019a]. While stationary importance sampling (SIS) can reduce variance,

rewards under stationary distributions (should they exist) are not appropriate for the problems

studied in this paper; SIS [Hallak and Mannor, 2017, Liu et al., 2018a, Xie et al., 2019] nevertheless

still suffers high variance when there is a lack of overlap. Fujimoto et al. [2019], Kumar et al. [2019]

suggest some promising algorithmic approaches for only considering policies with sufficient overlap:

while more work is needed, policies generated by these approaches would be more amenable to OPE,

and should improve the statistical properties of our method.

It is natural to consider extending our single-decision confounding model to settings where a hand-

ful of decisions (say 2-5) are affected by unobserved confounding. Worst-case bounds on E[Y (Ā1:T )]

under such extensions require solving optimization problems involving products of likelihood ratios

defined over different confounded time periods. Since these problems are nonconvex, they require

new approaches than our developments which heavily depends on convex duality.



Chapter 4

Identification of Subgroups With

Similar Benefits in Off-Policy

Policy Evaluation

Off-policy policy evaluation methods for sequential decision making can be used to help identify if

a proposed decision policy is better than a current baseline policy before deployment. However, a

new decision policy may be better than a baseline policy for some individuals but not others. This

has motivated a push towards personalization and accurate per-state estimates of heterogeneous

treatment effects (HTEs). Given the limited data present in many important applications, individual

predictions can come at a cost to accuracy and confidence in such predictions. We develop a method

to balance the need for personalization with confident predictions by identifying subgroups where it is

possible to confidently estimate the expected difference in a new decision policy relative to a baseline.

We propose a novel loss function that accounts for the uncertainty during the subgroup partitioning

phase. In experiments, we show that our method can be used to form accurate predictions of HTEs

where other methods struggle.

4.1 Introduction

Recent advances in technology and regulations around them have enabled the collection of an un-

precedented amount of data of past decisions and outcomes in different domains such as health

care, recommendation systems, and education. This offers a unique opportunity to learn better

decision-making policies using observational data. Off-policy policy evaluation (OPE) is concerned

with estimating the value of a proposed policy (evaluation policy) using the data collected under a

different policy (behavior policy). Estimating the value of an evaluation policy before deployment is

55
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essential, especially when interacting with the environment is expensive, risky, or unethical, such as

in health care [Gottesman et al., 2019a]. Fortunately, the reinforcement learning (RL) community

has developed different methods and theories focused on OPE e.g. [Jiang and Li, 2015, Thomas and

Brunskill, 2016, Kallus and Uehara, 2020].

OPE has been used extensively in the literature to demonstrate the superiority of a proposed

evaluation policy relative to the baseline (behaviour) policy e.g. [Komorowski et al., 2018]; however,

the evaluation policy may be better than the behaviour policy for some individuals but not others.

Hence, only looking at the estimated value of the evaluation policy before deployment, may be

misleading. In the non-sequential setting, a growing literature has focused on personalization and

estimation of heterogeneous treatment effect (HTE), the individual-level differences in potential

outcomes under the proposed evaluation policy versus the behaviour policy [Athey et al., 2019].

These methods often aim to learn a parametric or non-parametric function to predict HTE for each

individual [Athey and Imbens, 2016, Nie and Wager, 2017].

However, due to the limited availability of data and long horizon, the goal of personalization for

each individual can be unrealistic, especially in sequential settings. In practice, individual predictions

of treatment effect in these settings can be inaccurate and highly uncertain, providing no actionable

information. In this paper, we aim to provide actionable information to domain experts. Specifically,

we ask ”What subgroups of individuals can we confidently predict that will be significantly benefited or

harmed by adopting the evaluation policy?”. Asking this question instead of ”What is the treatment

effect for each individual?” allows us to group individuals that have similar treatment effects together,

pool the data, and make predictions that are both more accurate and confident.

We build upon a recursive partitioning algorithm proposed by Athey and Imbens [2016] for the

non-sequential setting which, similar to classification and regression trees (CART) [Breiman et al.,

1984], greedily minimize a loss function. Estimation of the loss function with this method can be too

noisy and often results in over-splitting, yielding too many subgroups, and inaccurate or uncertain

prediction, when applied to sequential settings. One key challenge in estimating the loss function is

estimating the variance of the estimator. Sample variance estimates are unstable and, as the horizon

increases, become even more unreliable.

To achieve our goal of identifying subgroups with significant treatment effects, we make two

contributions. First, we use a proxy of the variance of treatment effect estimator that can be

efficiently computed and is stable given the available amount of data. This mitigates the problem of

over-splitting. Second, we incorporate a regularization term that incentivizes recursive partitioning

to find subgroups with significant treatment effects. Our interest to find subgroups with significant

benefit or harm as a result of adopting the evaluation policy requires domain expert’s information

to characterize what a significant benefit or harm means. For example, a clinician may consider an

increase of 10% in survival rate significant, so only subgroups with a confident prediction of 10%

decrease or increases in survival rate will provide actionable information. The regularization term
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allows us to incorporate such information into the loss function. Combining these two additions,

we propose a new loss function that can be efficiently computed and hence be used in recursive

partitioning to achieve our goal.

On a simulated example of sepsis management [Oberst and Sontag, 2019] we show how our

proposed method can be used to find subgroups with significant treatment effect, providing more

accurate and confident predictions. Additionally, we apply our method to the sepsis cohort of MIMIC

III dataset [Johnson et al., 2016], illustrating how our method may be useful in identifying subgroups

in which a new decision policy may be beneficial or harmful relative to the standard approach. Our

proposed approach can be used as a tool to help inform policy deployment and could help guiding

hypothesis formation for future experimentation.

4.2 Related Work

Estimating the value of a new decision policy arise in many different applications, such as personal-

ized medicine [Obermeyer and Emanuel, 2016], bandits [Dud́ık et al., 2011] and sequential decision

makings [Thomas and Brunskill, 2016]. The RL community has developed different methods and

theories for off-policy policy evaluation (OPE) in sequential setting. These methods mostly fall into

different categories: importance sampling [Precup, 2000], model based and doubly robust methods

[Dud́ık et al., 2011, Thomas and Brunskill, 2016, Jiang and Li, 2015]. These methods can be used

along with our algorithm to estimate group treatment effect for a particular group; however, these

methods do not offer a way to perform partitioning.

In non-sequential settings, a growing number of literature seek to estimate heterogeneous treat-

ment effect (HTE) using different approaches. Imai and Ratkovic [2014] uses the LASSO to estimates

the effect of treatments, Shalit et al. [2017] uses neural networks and offers generalization bound

for individual treatment effect (ITE). Nie and Wager [2017] proposed two step estimation proce-

dure using double machine learning and orthogonal moments [Chernozhukov et al., 2018] that can

be applied on observational data to infer HTEs, and recently, Lee et al. [2020] suggests a robust

partitioning algorithm by inducing homogeneity in groups. However, these methods were developed

for non-sequential settings and näıvely applying them to sequential setting will result in predictions

with low accuracy and high uncertainty. Our work draws close parallel to methods using recursive

partitioning to estimate HTEs [Athey and Imbens, 2016, Athey et al., 2019], but those works suffer

from over-splitting the feature space in sequential setting due to noisy estimation of the loss func-

tion. We propose a different loss function that can be better estimated given the lack of data and

incorporate domain expert knowledge.
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4.3 Setting and Background

We consider episodic stochastic decision processes with a finite action space A, continuous state

space X ∈ RM , reward function R : X × A → [0, Rmax] and discount factor γ ∈ [0, 1]. A policy π

maps the state space to a probability distribution over the action space, and we assume each episode

lasts at most H steps.

A set of trajectories T = {τ1, . . . , τN} is provided. Each trajectory τi consists of a state xt, action

at and observed reward rt at step t, τi = {xi0, ai0, ri0, . . . , xiH}. Actions are generated by following a

known behaviour policy πb, at ∼ πb(st). We denote the evaluation policy by πe.

Rényi divergence For α ≥ 0 the Rényi divergence for two distribution P and Q is defined by

[Cortes et al., 2010]

Dα(P ||Q) =
1

α− 1
log2

∑
x

Q(x)

(
P (x)

Q(x)

)α−1

We denote the exponential in base 2 by

dα(P ||Q) = 2Dα(P ||Q)

The importance weights of two distributions P andQ can be defined as w(x) = P (x)/Q(x). Moments

of the importance weight can be represented by the Rényi divergence, that is

Ex∼Q[w(x)2] = d2(P ||Q)

Vx∼Q[w(x)] = d2(P ||Q)− 1

Effective Sample Size The effective sample size (ESS) [Kong, 1992] is often used for diagnosis

of IS estimators, ESS is defined as

ESS(P ||Q) =
N

1 + Vx∼Q[w(x)]

=
N

d2(P ||Q)

where N is the number of samples drawn to estimate the importance weights. The following display

is a common estimator of this quantity based on the importance weights [Owen, 2013].

ÊSS(P ||Q) =

(∑N
i=1 wi

)2

∑N
i=1 w

2
i
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4.4 Framework for Subgroup Identification

Our focus is to robustly quantify the expected benefit or cost of switching from a behavior policy

to a proposed evaluation policy on subsets of the population. To do so it is helpful to extend the

standard notion of the treatment effect to the (sequential decision) policy treatment effect. We

define the individual treatment effect t(x;πe, πb) for a possible initial state x as

t(x;πe, πb) =Eπe

[
H∑
t=0

γtrt|x0 = x

]
− Eπb

[
H∑
t=0

γtrt|x0 = x

]
. (4.1)

Before we introduce our definition of group treatment effects, we first define a partitioning over

the state space by L = {l1, . . . , lM} ∈ Π, such that
M⋃
i=1

li = X and ∀i, j : li
⋂
lj = ∅. Define the

partition function l(x;L) = li such that x ∈ li. Given a partitioning L, partition-value function for

a policy π can be defined as:

v(x;L, π) = E
x′∼Xa∼π(.|x′)

[
H∑
t=0

γtrt|x0 = x′, x′ ∈ l(x;L)

]
(4.2)

Using this function we can define group treatment effect, similar to the individual treatment

effect as,

T (x;L, πb, πe) = v(x;L, πe)− v(x;L, πb) (4.3)

note that group treatment effect is constant within every li, and we refer to each li as a group. With

little abuse of notation we denote the individual treatment effect by t(x) and group treatment effect

by T (x;L) and interchangeably use group and subgroup.

4.4.1 Group treatment effect estimator

Given a partition L, a set of trajectories T , the behaviour policy πb and an evaluation policy πe the

following estimator defines the group treatment effect estimator for an initial state x over a dataset

D = {(x0, ρ0, g0), . . . , (xN , ρN , gN )},

T̂ (x;L) =
1

|{xi|xi ∈ l(x;L)}|
∑

i|xi∈l(x;L)

(ρigi − gi) (4.4)

Where, xi = xi0 is the initial state of a trajectory τi, gi is the discounted return gi =
∑H
t=0 γ

trit

and ρi is the importance sampling ratio

ρi =

H∏
t=0

πe(a
i
t|xit)

πb(ait|xit)
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It is straightforward to show that T̂ (x;L) is an unbiased estimator of T (x;L) in every group.

The aim of this chapter is to find groups L (subgroups) that we can accurately predict the

group treatment effect for them. Following much of the literature [Athey and Imbens, 2016, Thomas

and Brunskill, 2016] we focus on the MSE criteria to rank different estimators defined by different

partitioning; however, as explained later, we modify this loss in multiple ways to account for our

goal.

MSE(T̂ ;L) = E
x∼X

[(
t(x)− T̂ (x;L)

)2
]

Note that MSE loss is infeasible to compute, as we do not observe individual treatment effect

t(x). We form the adjusted MSE (AMSE) as

AMSE(T̂ ;L) = E
x∼X

[(
t(x)− T̂ (x;L)

)2

− t(x)2

]
(4.5)

Adjusted MSE and MSE impose the same ranking among different partitioning as E
x∼X

[t(x)2] is

independent from the partitioning. Note that adjusted MSE, similar to MSE cannot be computed;

however, we now show that it is equivalent to an expectation over quantities that can be estimated

from data,

Theorem 5. For a given partition L ∈ Π, let T (x;L) be the group treatment effect defined in

equation 4.3, t(x) be the individual treatment effect as defined in equation 4.1 and T̂ (x;L) an unbiased

estimator of T (x;L). The following equality holds for the adjusted MSE.

AMSE(T̂ ;L) = −Ex∼X
[
T̂ 2(x;L)

]
+ 2 Ex∼X

[
V
[
T̂ (x;L)

]]
Where V[T̂ (x;L)] is the variance of the estimator T̂ (x;L).

Proof. We start by decomposing the adjusted MSE by adding and subtracting T (x;L),

AMSE(T̂ ;L) = −Ex∼X
[(
t(x)− T̂ (x;L)

)2

− t(x)2

]
= Ex∼X

[
(t(x)− T (x;L))2 − t(x)2︸ ︷︷ ︸

(i)

+ (T (x;L)− T̂ (x;L))2︸ ︷︷ ︸
ii

+ 2(t(x)− T (x;L))(T (x;L)− T̂ (x;L))︸ ︷︷ ︸
(iii)

]

Now we look at each part separately, for part (i),

Ex∼X
[
(t(x)− T (x;L))2 − t(x)2

]
(4.6)
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= Ex∼X
[
T (x;L)2 − 2t(x)T (x;L)

]
(4.7)

1
=
∑
li∈L

P (li)T (x; li)
2 − 2

∑
li∈L

P (li)T (x; li) (4.8)

= −
∑
li∈L

P (li)T (x; li)
2 (4.9)

2
= −Ex∼X[T (x;L)2] (4.10)

Where in 1 we expand the expectation over each group of the partition L = {l1, . . . , lM}. Note

that, T (x; li) = T (x;L) such that x ∈ li, by definition, T (x; li) is constant for all x ∈ li. In 2 we

used the fact that Ex∈li [t(x)] = T (x; li).

Now, consider the variance of T̂ (x; li) for group li ∈ L,

V
[
T̂ (x; l)

]
= E
x∈li

[T̂ 2(x; li)]−
[
E
x∈li

T̂ (x; li)

]2

= E
x∈li

[T̂ 2(x; li)]− T (x; li)
2 (4.11)

Which follows by T̂ (x; li) being an unbiased estimator of T (x; li). Taking the expectation over the

feature space and substituting equation 4.11 into 4.6,

Ex∼X [(t(x)− T (x;L))2 − t(x)2] = −
∑
li∈L

P (li)T (x; li)
2

=
∑
li∈L

P (li)
[
V
[
T̂ (x; li)

]
− Ex∼li

[
T̂ 2(x; li)

]]
= Ex∼X

[
V
[
T̂ (x; l)

]]
− Ex∼X

[
T̂ 2(x; l)

]
Now we consider the second part part (ii),

Ex∼X
[(
T (x;L)− T̂ (x;L)

)2
]

=
∑
li

P (li)Ex∈li
[(
T (x; li)− T̂ (x; li)

)2
]

=
∑
li

P (li)Ex∈li
[(

Ex∈li [T̂ (x; li)]− T̂ (x; li)
)2
]

=
∑
li

P (li)V
[
T̂ (x; li)

]
= Ex∼X

[
V
[
T̂ (x;L)

]]
Where the third line follows by T̂ (x; li) being an unbiased estimator of T (x; li).
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Looking at the last term (iii),

Ex∼X
[(
t(x)T̂ (x;L)

)]
=
∑
li∈L

P (li)Ex∈li
[
t(x)T̂ (x; li)

]
=
∑
li∈L

P (li)T̂ (x; li)Ex∈li [t(x)]

=
∑
li∈L

P (li)T̂ (x; li)T (x; li)

= Ex∈X
[
T̂ (x; li)T (x; li)

]
Which implies Ex∼X

[
(t(x)− T (x;L))T̂ (x;L)

]
= 0. As a result,

(iii) = 2Ex∈X
[
(t(x)− T (x;L))

(
T (x;L)− T̂ (x;L)

)]
= 2Ex∈X [(t(x)− T (x;L)) (T (x;L))]

− 2Ex∈X
[
(t(x)− T (x;L))

(
T̂ (x;L)

)]
= 0

Putting the results together, proves the result.

The results of theorem 5 suggest an estimatable quantity that can be used to select among

different potential partitions. More precisely, given a dataset D the empirical adjusted MSE can be

written as,

EMSE(T̂ ;L) = − 1

N

N∑
i=1

T̂ 2(xi;L) +
2

N

N∑
i=1

V
[
T̂ (xi;L)

]
(4.12)

Where V[T̂ (xi;L)] is the variance of the estimator T̂ (xi;L) in the subgroup li s.t. li = l(xi;L). We

next describe an algorithm to construct a good partition that minimizes the above loss, as well as

how we alter the above loss to further our goal of being able to robustly estimate group treatment

effects.

4.5 Algorithm for Subgroup Identification

In this section we first assume access to a loss function L(L) and describe the recursive partitioning

algorithm to minimize it. Further we discuss the modifications we apply to the empirical adjusted

MSE in section 4.5.2 to obtain the loss function L(L).
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4.5.1 Algorithm

In order to partition the feature space to different subgroups we minimize a loss function L(L) with

recursive partitioning, minL∈Π L(L). First in the partitioning phase, similar to classification and

regression tree (CART) [Breiman et al., 1984], we build a tree by greedily splitting the feature space

to minimize the loss function, and stop splitting further when there is no such split that results in

the reduction of the loss function (partitioning phase), we call this a treatment effect tree.

After building the treatment effect tree, each leaf li is a group and we can form an estimate of

the group treatment effect by equation 4.4 (estimation phase). Note that in the estimation phase,

different OPE methods such as model based and doubly robust [Thomas and Brunskill, 2016, Liu

et al., 2018b] can be used to form the prediction. In this work, we use the same estimator in the

partitioning and estimation phase and mainly focus on developing a loss function to be used in

the partitioning phase. Additionally, we compute confidence intervals around our estimation by

bootstrapping [Efron and Tibshirani, 1994].

4.5.2 Loss Function

One way to estimate the empirical adjusted MSE in equation 4.12 is by substituting the variance

term with the sample variance of the estimator. For example for the estimator T̂ (x;L) defined in

equation 4.4 the sample variance V̂[.] can be estimated by,

V̂[T̂ (xi;L)] =
1

|li|
∑
i|xi∈li

(
gi(ρi − 1)− T̂ (xi;L)

)2

(4.13)

where, li = l(xi;L). By substituting the sample variance in equation 4.13 into equation 4.12,

we obtain a loss function that can be easily computed by data. This is similar to the loss proposed

by Athey and Imbens [2016] in the non-sequential setting.

However, estimation of the sample variance may be very noisy due to limited data, particularly

in our sequential setting. A mis-estimation of the variance may result in an avoidable undesirable

split in partitioning phase that would have not happened given a better estimate of the variance.

Indeed, over-splitting is a common failure mode of using this loss function as we demonstrate in our

experiments. We now consider alternate estimates to the sample variance for use in our target loss

function.

Variance Estimation. To mitigate the issue of over-splitting we modify the loss function by

a proxy of the variance term which can be computed efficiently. Our derivation is similar to a

derivation for the variance of OPE presented in Metelli et al. [2018] with a few minor differences.

First note that the variance of the treatment effect estimator T̂ = 1
N

∑
i(ρi − 1)gi can be upper

bounded by the variance of the importance sampling weights. Since V[T̂ ] ≤ E[T̂ 2]
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V[T̂ ] ≤
‖g‖2∞
N2

E

[∑
i

(ρi − 1)2

]

=
1

N
‖g‖2∞ V[ρ],

where the last equality follows by observing that E[ρ] = 1. As noted by Metelli et al. [2018], we

can use the Rényi divergence Dα(Pe||Pb) to represent moments of the importance weights of two

distributions Pe and Pb, w(x) = Pe(x)/Pb(x). Denote the exponential in base 2 by dα(Pe||Pb) =

2Dα(Pe||Pb) and let Pe and Pb be the distribution of the trajectories introduced by the evaluation

and behaviour policy. The variance of the treatment effect estimator can be written as

V[T̂ ] ≤ ‖g‖2∞

(
d2(Pe||Pb)

N
− 1

N

)
This expression can be related to the effective sample size of the original dataset given the evaluation

policy

V[T̂ ] ≤ ||g||2∞
(

1

ESS
− 1

N

)
(4.14)

Note that in the special case of behaviour policy being the same as the evaluation policy, this

bound evaluates to zero. We denote the RHS of equation 4.14 by Vu[.].

In our work, we use Vu[.] in each leaf as a proxy of variance of the estimator in the leaf. That is,

Vu[T̂ (xi;L)] = ||g(x)||2∞
(

1

ESS(li)
− 1

|li|

)
, (4.15)

where we use the common ESS Owen [2013] estimate ESS(li) by,

ÊSS(li) =
(
∑
j ρj)

2∑
j ρ

2
j

where the sum is over samples inside the group i, {j|xj ∈ li}. Vu[.] can be computed efficiently and

the conservative variance estimation using Vu[.] avoids the problem of variance underestimation. We

will see experimentally our proposed approach can result in more stable partitioning.

Note that another approach to get a better estimate of the variance could be to leverage boot-

strapping; however, using such a procedure is not feasible in the partitioning phase due to it’s

prohibitive high computational cost, since it has to be done for every evaluation of the loss function.

Regularization In many applications, actionable information needs to satisfy certain conditions.

For example, a clinician may consider a knowledge of group treatment effect useful, if we can

guarantee with high probability that the treatment effect is α bounded away from zero. Our above
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loss function which is focused on minimizing the mean squared error would not necessarily identify

these practically significant subgroups.

Therefore we now introduce a regularization term into our loss function to encourage finding such

partitions where some subgroups have treatment effects that are bounded away from zero. In order

to do so we use Cantelli’s inequality to derive a lower bound on the estimator defined in equation

4.4. While this is a weaker bound than Bernstein, this allows us to avoid assuming we have access

to an upper bound on the importance weights.

We do assume that the function T̂ [x;L] : X → R, which is an expectation over states, is a

bounded function (||T̂ (x;L)||∞ < ∞). We start by writing Cantelli’s inequality applied to the

random variable T̂ (x;L),

P
(
T̂ (x;L)− E[T̂ (x;L)] ≥ λ

)
≤ 1

1 + λ2

V[T̂ (x;L)]

Assigning δ to the right hand side and considering the complementary event, we have with probability

1− δ,

E[T̂ (x;L)] ≥ T̂ (x;L)−
√

1− δ
δ

V[T̂ (x;L)] (4.16)

With Equation 4.16 we define the (margin α) regularization term

R(xi;L,α) = max

{
0, α−

(
|T̂ (xi;L)| − c

√
Vu[T̂ (xi;L)]

)}
(4.17)

Note that we used Vu[.] instead of V[.] in equation 4.17 to avoid issues arising from under

estimation of the variance. Although we can obtain c by setting a specific value of δ, we view

this as a tuning parameter for regularization. Recall that equation 4.17 is only used in the recursive

partitioning process and the final bounds on the group treatment effect are obtained by bootstrapping

in the estimation phase.

In a similar fashion, other types of regularizations depending on domain expert’s input can be

used in partitioning phase. For example, a domain expert may be interested to take more risks if

the predicted group treatment effect is larger. This type of information can be incorporated as,

R(xi;L,α) = max

0, α− |T̂ (xi;L)|

c

√
Vu[T̂ (xi;L)]


Loss Function By combining the regularization term and using the proxy variance, we obtain our

final loss function.

L(L) = − 1

N

N∑
i=1

T̂ 2(xi;L) +
2

N

N∑
i=1

Vu
[
T̂ (xi;L)

]
+
C

N

N∑
i=1

R(xi;L,α), (4.18)
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where C is the regularization constant. This loss is minimized using recursive partitioning. We call

our algorithm GIOPE, group identification in off-policy policy evaluation. Note in Theorem 5 we

relied on T̂ (x;L) be an unbiased estimate of T (x;L). To accomplish this with our chosen estimator

for T (x; l) we use independent set of samples for partitioning phase and the estimation phase. The

importance of sample splitting to avoid overfitting during off policy estimation is well studied (e.g.

[Craig et al., 2020, Athey and Imbens, 2016]).

4.6 Experiments

We illustrate how our approach allows us to partition the feature space into subgroups such that we

can make confident and accurate predictions of the group treatment effect. We empirically evaluate

our method in sequential decision making settings, compare to the baseline and perform ablation

analysis to show the benefit of each modification we have proposed.

We start by a simple toy example to illustrate the benefits of our method, later we evaluate our

method on a simulated health care example, management of sepsis patients [Oberst and Sontag,

2019]. We compare to a strong baseline, causal forests [Athey et al., 2019] that was developed for

non-sequential setting. Additionally, we use freely available MIMIC III dataset of ICU patients

[Johnson et al., 2016], and focus on the sepsis cohort Komorowski et al. [2018] to show how our

method can be used with real world data.

4.6.1 Toy MDP

We consider a simple Markov decision process (MDP) with the state space x ∈ [0, 1], discrete action

space a ∈ {−1, 0, 1} and the reward function is defined as,

r(x) = 1− |x− 0.5|

The transition dynamic is specified by,

xt+1 = clip(xt + κ× at + ε, 0, 1)

where the function clip(x, a, b), clips the value of x between a and b, κ = 0.2 and ε ∼ N (0, 0.05).

Each episode lasts H steps. Intuitively, action 1 takes the agent to the right, −1 to the left and 0

same location with some gaussian noise. If the agent hits the boundary, the action has no effect on

the position.

The behaviour policy, takes action with the following probabilitiesx < 0.2 : πb(−1) = 0.25, πb(0) = 0.25, πb(1) = 0.5

x ≥ 0.2 : πb(−1) = 0.5, πb(0) = 0.25, πb(1) = 0.25
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Figure 4.1: Toy MDP. (a) Mean squared error of treatment effect prediction for our method and
causal forest(CF). (b) True and predicted treatment effect for different values of x for our method
and causal forest.

And the evaluation policy,x > 0.8 : πe(−1) = 0.5, πe(0) = 0.25, πe(1) = 0.25

x ≤ 0.8 : πe(−1) = 0.25, πe(0) = 0.25, πe(1) = 0.5

We generated 50000 trajectories with the behaviour policy for horizons {1, 2, 3, 4, 5} and averaged

all results over 10 runs. First we look at the mean squared error of the treatment effect prediction

on 25 equally spaced points in [0, 1]. Figure 4.1 (a) compares the MSE between our method (with

regularization constant C = 1.0 and margin α = 0.05) with causal forest (CF). GIOPE shows smaller

MSE and as the horizon increases the benefit is more apparent. Figure 4.1 (b) shows the predicted

value of the treatment effect for our method and causal forest for horizon H = 4 along with the

true treatment effect for different values of x. This illustrates the reason of performance gap shown

in figure 4.1 (a), our method partitions the state space and makes the same prediction for each

subgroup that results in more accurate predictions, whereas causal forests over-splits and compute

different values of the treatment effect for every value of x which are often inaccurate.

Figure 4.2 compares the mean squared error of our method versus the causal forests for different

range of hyper-parameters. Panel (a) shows the results for margin α = 0.05 and values of regular-

ization constant C = {1, 3, 5, 10} and panel (b) shows the results for margin α = 0.1. As shown,

regularization has small effects on the results and the results reported in the main text holds for a

large range of hyper-parameters.

4.6.2 Sepsis Simulation

There has been growing number of literature that seek to learn an automated policy to manage

septic patients in the ICU, reader may find a short review in Gottesman et al. [2019a]. However,
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Figure 4.2: Toy MDP. (a) regularization margin α = 0.05, (b) regularization margin α = 0.1

newly suggested decision policies may be beneficial for some subgroups of patients while harmful to

others. We use the sepsis simulator developed in Oberst and Sontag [2019] to show case this scenario

and evaluate our models in detecting such subgroups.

Simulator In this simulator each patient is described by four vital signs {heart rate, blood pres-

sure, oxygen concentration and glucose level} and a binary indicator of diabetes, that take values in a

subset of {very high, high, normal, low, very low}, that results in a state space of size |S| = 1440. In

each step the agent can take an action to put the patient on or off of treatment options, {antibiotics,

vasopressors, and mechanical ventilation}, so that the action space has cardinality |A| = 23. Each

episode run until the horizon H which incurs the reward of -1 upon death, +1 upon discharge and

0 otherwise. We use a discount factor of γ = 0.99 across all experiments, and all reported results

are averaged over 15 different runs.

Data Generation In order to form the behaviour and the evaluation policy we assume both

policies act nearly optimal with some modifications. We perform policy iteration to find the (deter-

ministic) optimal policy for this environment and soften the policy by subtracting 0.1 probability

from the optimal action and equally distributing it among other actions, we call this policy πst.

We assume the behaviour policy πb is similar to πst except it has has 15% less chance of using the

mechanical ventilator. On the other hand, the evaluation policy πe is similar to πst but has 20% less

chance of using the vasopressor. Notice that, the evaluation policy utilized the mechanical ventila-

tor more and vassopressor less than the behaviour policy. Regardless of the horizon, the evaluation

policy achieves better expected discounted return than the behaviour policy. However, there are

subgroups of individuals, for example diabetics, that will worse off by using the evaluation policy.

We generate 50000 trajectories using the behaviour policy for different horizons for different horizons

{5, 7, 9, 11, 13}.
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Figure 4.3: Identified groups. (a) Horizon 5,(b) Horizon 7, (c) 9 and (d) 13.

Hyperparameters We used the following set of hyper-parameters. Regularization constant C =

5.0, regularization margin α = 0.05, regularization confidence value δ = 0.4, maximum depth of the

tree d =∞ and minimum number of samples in each leaf 50.

Identified Subgroups First, we qualitatively describes the groups discovered by our method.

Figure 4.3 show the subgroups and their group treatment effect for one run of horizons 5, 7, 9,

and 13. One can see that in each setting, our methods can identify subgroups with significant

negative treatment effect, group 1 in all settings, which all of them represents group with diabetes

and elevated heart rate. This qualitative analysis unfortunately cannot be done for methods like

causal forest as they are not designed to yield distinctive subgroups.

Comparison First we look at the mean squared error computed on the individual level. In order

to compute this value, for each individual in the test set that consists of n = 20000 samples from the

same distribution as the training set, we sample 30 different trajectories using the evaluation policy

and the behaviour policy to compute the true treatment effect for each individual. Mean squared
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Figure 4.4: Sepsis simulator, comparison with causal forest (CF). (a) Mean squared error of predic-
tion. (b) Average size of the 95% confidence intervals (CI)
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Figure 4.5: Ablation study. (a) Mean squared error computed on individual level. (b) Group mean
squared error

errors is then simply

1

n

n∑
i=1

(t(xi)− t̂(xi))2

Figure 4.4 shows the mean squared error of prediction made by our method versus causal forest

(CF). As shown in figure 4.4 (a), our method outperforms the baseline but as horizon increases both

models struggles to generate valid results. Panel (b) of figure 4.4 shows the average size of the 95%

confidence intervals. This highlights one of the main benefits of our method, that is more accurate

prediction along with tighter confidence intervals.

Ablation Study In order to showcase the benefit of each modification that we proposed, we

perform ablation study on the sepsis simulator. We compare three different methods with 15 different

runs.
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Figure 4.6: 95% Coverage of Our method (GIOPE ), Our method without regularization term
(GIOPE-R) and Our method without regularization and proxy variance (GIOPE-RP). Results ac-
count for 15 different runs. (a) Percentage of groups that the true group treatment effect is covered
by the 95% confidence interval. (b) Average size of confidence intervals.

.

1. GIOPE : Using the loss function presented in equation 4.18. In all experiments, the value of

regularization is set to C = 5.0 and the margin α = 0.05. We found that changing this regu-

larization value has little effect on the results as we presented in the supplementary materials.

2. GIOPE - Regularization (GIOPE-R): Using the loss function in equation 4.12 with the sug-

gested proxy variance in equation 4.15.

3. GIOPE - Regularization and Proxy Variance (GIOPE-RP): This method uses the loss function

presented in equation 4.12 with the sample variance estimate. Note that this basic version is

similar to the loss function proposed in Athey and Imbens [2016].

First we look at mean squared error computed on the individual level. As shown in Figure 4.5

(a) our method shows significant benefits compared to GIOPE-R and GIOPE-RP. This comes with

an important observation that our method also shows more stability as the performance does not

fluctuates as much across different horizons as well as having smaller standard errors. Note that, our

method do not optimize for this objective and the individual mean squared error is best minimized

with the sample variance in the limit of infinite data, the benefit comes as an externality of avoiding

to predict each individual separately.

Next we look at mean squared error in group treatment effect. That is, for a groups i, denote

the prediction of the group treatment effect by ĝi and the true group treatment effect by gi, then

the group MSE is defined as

1

G

G∑
i=1

(gi − ĝi)2

where G is the total number of groups. Figure 4.5 (b) shows the MSE in group treatment effect as

we increase the horizon. Similar to individual MSE, our method obtains lower MSE and displays
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more stability across different horizons. This stability is mainly due to avoiding to over split. For

example, average number of discovered groups in GIOPE-RP method for horizon 13 is 26 whereas

for other GIOPE-R is 5 and GIOPE is 4.

Finally we look at coverage. Figure 4.6, panel (a) shows the coverage of 95% confidence intervals

of the true group treatment effect for different methods and horizons. Methods that use variance

proxy instead of sample variance show consistently more coverage. Figure 4.6 panel (b) shows the

average size of the confidence interval for each group treatment effect prediction. This indicates that

using the upper bound along with regularization (GIOPE) yields more coverage while offering tighter

confidence intervals. This observation highlights the main benefit of using regularization along with

proxy variance that allows us to discover groups that we can more accurately and confidently predict

their treatment effect. Smaller standard error of confidence intervals size highlights the stability of

GIOPE across different runs.

In order to evaluate the effect of hyper-parameters, we perform the ablation study for two dif-

ferent values of regularization confidence interval δ = 0.1 and δ = 0.4 and two different values of

regularization constant C = 5.0 and C = 1.0. Figure 4.7 (a) shows the result for mean squared error

and (b) for group mean squared error. As shown, the effect of regularization is small, and the same

results as in the main text can be obtained with different range of hyper-parameters. Similarly,

figure 4.7 (c) shows the coverage of the 95% confidence interval and (d) is the average size of CI.

The results obtained in the main text holds with different value of hyper-parameters.

4.6.3 ICU data - MIMIC III

To show how our method can be used on a real data set, we use a cohort of 14971 septic patients

in the freely accessible MIMIC III dataset [Johnson et al., 2016]. Prior work Komorowski et al.

[2018] used off policy learning and proposed a new decision policy that might provide improved

patient outcomes on average. Our training set consist of 14971 individuals, with 8442 male and 6529

female. The mortality rate in our cohort is 18.4%. The feature space is of size 44 consist of the

following values: gender, re admission, mechvent, age, Weight kg, GCS, HR, SysBP, MeanBP, DiaBP,

RR, Temp C, FiO2 1, Potassium, Sodium, Chloride, Glucose, Magnesium, Calcium, Hb, WBC count,

Platelets count, PTT, PT, Arterial pH, paO2, paCO2, Arterial BE, Arterial lactate, HCO3,

Shock Index, Shock Index, PaO2 FiO2, cumulated balance, SOFA, SIRS, SpO2, BUN, Creatinine,

SGOT, SGPT, Total bili, INR, output total, output 4hourly.

In order to estimate the behaviour policy, we use KNN with k = 100 on the test set, we use l2

distance with uniform weights across different features to measure the distance. If an action was

not taken among all 100 nearest neighbours, we assign the probability 0.01 to the action. We used

IV fluid and mechanical ventilation for actions and used 20% quantile to discretize the action space

into 25 actions.

For the evaluation policy, we used a similar method as the behaviour policy on a random subset
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Figure 4.7: Ablation study, results of GIOPE for four different values of parameters. (a) Mean
squared error (b) group mean squared error, (c) 95% confidence interval coverage and (d) average
size of confidence intervals

of training set (20% of the training data). We only used the following features to estimate the

distance for the evaluation policy,

{HR, SysBP, Temp C, Sodium, Chloride, Glucose, Calcium, paO2, Arterial BE, SOFA, SIRS,

Creatinine}
Simiarly, if an action was not taken among all 100 nearest neighbours, we assign the probability

0.01 to the action. We used the following set of hyper-parameters: regularization constant C = 100.0,

regularization margin α = 0.0, regularization confidence value c = 2.0, maximum depth of the tree

d =∞ and minimum number of samples in each leaf 1000.

Using weighted importance sampling the estimated value of the decision policy is 65.33 with

effective sample size of 146.8 which suggest an increase of 2.43 on the survival chance compared to

the behaviour policy. Here we take this decision policy and estimate its impact on different potential

subgroups.

In Figure 4.8 we present the five groups produced by our algorithm along with their estimated

group treatment effect (which is the difference between the baseline clinician policy and the decision
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Figure 4.8: MIMIC III dataset. Although positive treatment effect is predicted by weighted im-
portance sampling on the full cohort, groups 1 and 2 will like be harmed by the evaluation policy.
(a) Estimated treatment effect for each subgroup, (b) Effective sample size of weighted importance
sampling for each subgroup

policy) and effective sample size of weighted importance sampling in each subgroup. While some of

patients fall into subgroup 3, 4 and 5, there are a number of patients that may experience no benefit

or even a potential negative treatment effect from the proposed new treatment policy (groups 2 and

1). This highlights how our method may be useful in identifying subgroups in which a new decision

policy may be beneficial or harmful relative to the standard approach.

We caveat the results in this section by noting that using IS based methods on real world datasets,

and the MIMIC III dataset in particular is very susceptible to noise induced by the small effective

sample size of the cohort [Gottesman et al., 2019a]. Furthermore, our method is susceptible to

this source of noise twice, as IS based estimators are used both in the partitioning phase and the

estimation phase. However, despite their high susceptibility to noise, IS methods are often applied

to the MIMIC III dataset for their theoretical properties, but their results for real data should be

interpreted with caution. In our experiment we intentionally designed the decision policy close to

the behaviour policy to avoid issues arising from small effective sample size.

4.7 Summary and Conclusion

In this chapter, we proposed a novel method to partition the feature space, enabling us to find

subgroups that we can accurately and confidently predict the group treatment effect for them.

Our approach is in contrast with previous methods that estimate individual-level treatment effects,

yielding uncertain and less accurate predictions. We do so, by proposing a novel loss function

that utilizes; 1. A proxy on the variance estimator that is easy to compute and stable; 2. A

regularization term that incentivizes the discovery of groups with significant treatment effects and

allows us to integrate domain expert’s input into partitioning algorithm. We further evaluate our
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method on both simulated domains and real-world data.

Our method can leverage the existing data to raise caution when necessary about a possible

negative effect of the newly suggested decision policy on some subgroups. Additionally, results from

our method when applied to observational data can help to design multi-stage randomized trials

that are powered toward detecting harm or benefit of the evaluation policy compared to the baseline

policy for specific subgroups.

There are multiple immediate avenues of interesting research questions. Integrating other meth-

ods of off-policy policy evaluation in the partitioning phase, for example doubly robust or model-

based method [Thomas and Brunskill, 2016]. This requires obtaining a stable estimate of the vari-

ance of the estimator that can be efficiently computed. We suggested using recursive partitioning

to minimize the loss function; however, it’s possible that these greedy algorithms fail to find the

optimal solution; thus, an immediate question is how can we apply better optimization techniques.

Finally, we considered partitions with respect to the initial state, an interesting avenue of research

is extending our work to incorporate transition dynamics in the partitioning.
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Appendix A

Supplementary Materials for

Chapter 2

In this chapter we provide technical proofs for materials presented in chapter 2. First we start by

proving some helper lemmas.

A.1 Proof of basic lemmas

Before we give the proof of our main results, we give a set of essentially standard lemmas that we

build on in the rest of the chapter.

Lemma 4. Let Z, Z̃ ∈ Z be such that FZ̃(s,a) ≤ FZ(s,a) for all (s, a). Assume finitely many states

|S| < ∞ and actions |A| < ∞. Let R̂(s, a) and P̂ (s, a) be the empirical reward distributions and

transition probabilities. Assume further that

c̃(s, a) ≥ ‖FR̂(s,a) − FR(s,a)‖∞ +
∑
s′∈S

(
P̂ (s′|s, a)− P (s′|s, a)

) ∑
a′∈A

π(a′|s′)FγZ(s′,a′)+R(s,a)(x)

(A.1)

where c̃(s, a) = c√
n(s,a)

is the shift in the optimism operator Oc. Then FOcT̂ πZ̃(s,a) ≤ FT πZ(s,a) for

all (s, a). Note that it is sufficient to pick c̃(s, a) ≥ ‖FR̂(s,a) −FR(s,a)‖∞ + ‖P̂ (·|s, a)−P (·|s, a)‖1 to

ensure the Assumption in Eq. (Equation A.1).

Lemma 4. We start with some basic identities which follow directly from the definition of CDFs

FPπZ(s,a)(x) =
∑

s′∈S,a′∈A
P (s′|s, a)π(a′|s′)FZ(s′,a′)(x) (A.2)

FγZ(s,a)(x) = FZ(s,a)(x/γ) (A.3)
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FR(s,a)+Z(s,a)(x) =

∫
FZ(s,a)(x− y)dFR(s,a)(y) =

∫
FR(s,a)(x− y)dFZ(s,a)(y) (A.4)

where the integrals are Lebesgue-Stieltjes integrals and understood to be taken over [Vmin, Vmax]. We

omit the limits in the following to unclutter notation. These identities allow us to derive expressions

for FT πZ(s,a) and FOcT̂ πZ′(s,a):

FT πZ(s,a)(x) = FR(s,a)+γPπZ(s,a)(x) (A.5)

=

∫ ∑
s′∈S,a′∈A

P (s′|s, a)π(a′|s′)FγZ(s′,a′) (x− y) dFR(s,a)(y) (A.6)

=
∑

s′∈S,a′∈A
P (s′|s, a)π(a′|s′)

∫
FγZ(s′,a′) (x− y) dFR(s,a)(y) (A.7)

=
∑

s′∈S,a′∈A
P (s′|s, a)π(a′|s′)FγZ(s′,a′)+R(s,a)(x) (A.8)

FOcT̂ πZ̃(s,a)(x) = FOc(R̂(s,a)+γP̂πZ̃(s,a))(x) (A.9)

= 0 ∨

∫ ∑
s′∈S,a′∈A

P̂ (s′|s, a)π(a′|s′)FγZ̃(s′,a′) (x− y) dFR̂(s,a)(y)− c̃(s, a)


(A.10)

= 0 ∨

 ∑
s′∈S,a′∈A

P̂ (s′|s, a)π(a′|s′)FγZ̃(s′,a′)+R̂(s,a)(x)− c̃(s, a)

 (A.11)

Here we exchanged the finite sum with the integral by linearity of integrals. Using these identities,

we will show that FOcT̂ πZ̃(s,a)(x) − FT πZ(s,a)(x) ≤ 0 for all x. Consider any fixed x and first the

case where the max in FOcT̂ πZ̃(s,a)(x) is attained by 0. In this case FOcT̂ πZ̃(s,a)(x)−FT πZ(s,a)(x) =

−FT πZ(s,a)(x) ≤ 0 because CDFs take values in [0, 1]. For the second case, we combine (Equa-

tion A.8) and (Equation A.11) to write

FOcT̂ πZ̃(s,a)(x)− FT πZ(s,a)(x)

=
∑

s′∈S,a′∈A
P̂ (s′|s, a)π(a′|s′)FγZ̃(s′,a′)+R̂(s,a)(x)− c̃(s, a)

−
∑

s′∈S,a′∈A
P (s′|s, a)π(a′|s′)FγZ(s′,a′)+R(s,a)(x)

= −c̃(s, a)

+
∑

s′∈S,a′∈A
P̂ (s′|s, a)π(a′|s′)

(
FγZ̃(s′,a′)+R(s,a)(x)− FγZ(s′,a′)+R(s,a)(x)

)
(A.12)



A.1. PROOF OF BASIC LEMMAS 90

+
∑

s′∈S,a′∈A
P̂ (s′|s, a)π(a′|s′)

(
FγZ̃(s′,a′)+R̂(s,a)(x)− FγZ̃(s′,a′)+R(s,a)(x)

)
(A.13)

+
∑

s′∈S,a′∈A
π(a′|s′)

(
P̂ (s′|s, a)− P (s′|s, a)

)
FγZ(s′,a′)+R(s,a)(x). (A.14)

In the following, we consider each of the terms (Equation A.12)–(Equation A.14) separately. Let us

start with (Equation A.12) and bound

FγZ̃(s′,a′)+R(s,a)(x)− FγZ(s′,a′)+R(s,a)(x)

=

∫ [
FZ̃(s,a)

(
x− y
γ

)
− FZ(s,a)

(
x− y
γ

)]
dFR(s,a)(y) ≤

∫
0dFR(s,a)(y) = 0 (A.15)

where the identity follows from the basic identities in Eq. (Equation A.2) and the inequality from

the assumption that FZ̃(s,a) ≤ FZ(s,a) for all (s, a). Hence, the term in Eq. (Equation A.12) is always

non-positive. Moving on to the term in Eq. (Equation A.13) which we bound with similar tools as

FγZ̃(s′,a′)+R̂(s,a)(x)−FγZ̃(s′,a′)+R(s,a)(x) (A.16)

=

∫ [
FR̂(s,a) (x− y)− FR(s,a) (x− y)

]
dFγZ̃(s,a)(y) (A.17)

≤
∫ ∣∣∣FR̂(s,a) (x− y)− FR(s,a) (x− y)

∣∣∣ dFγZ̃(s,a)(y) (A.18)

≤ sup
z

∣∣∣FR̂(s,a) (z)− FR(s,a) (z)
∣∣∣ ∫ dFγZ̃(s,a)(y) (A.19)

=
∥∥∥FR̂(s,a) − FR(s,a)

∥∥∥
∞
. (A.20)

This yields that Eq. (Equation A.13) is bounded by this as well

∑
s′∈S,a′∈A

P̂ (s′|s, a)π(a′|s′)
∥∥∥FR̂(s,a) − FR(s,a)

∥∥∥
∞

=
∥∥∥FR̂(s,a) − FR(s,a)

∥∥∥
∞
. (A.21)

Finally, the last term from Eq. (Equation A.14) can be bounded as follows

∑
s′∈S

(
P̂ (s′|s, a)− P (s′|s, a)

) ∑
a′∈A

π(a′|s′)FγZ(s′,a′)+R(s,a)(x) (A.22)

≤‖P̂ (·|s, a)− P (·|s, a)‖1

∥∥∥∥∥∑
a′∈A

π(a′|·)FγZ(s′,a′)+R(s,a)(x)

∥∥∥∥∥
∞

(A.23)

≤‖P̂ (·|s, a)− P (·|s, a)‖1

∥∥∥∥∥∑
a′∈A

π(a′|·)× 1

∥∥∥∥∥
∞

(A.24)

≤‖P̂ (·|s, a)− P (·|s, a)‖1 (A.25)

Combining the individual bounds for each of the terms (Equation A.12)–(Equation A.14), we end



A.1. PROOF OF BASIC LEMMAS 91

up with

FOcT̂ πZ̃(s,a)(x)− FT πZ(s,a)(x) (A.26)

≤− c̃(s, a) + ‖FR̂(s,a) − FR(s,a)‖∞

+
∑
s′∈S

(
P̂ (s′|s, a)− P (s′|s, a)

) ∑
a′∈A

π(a′|s′)FγZ(s′,a′)+R(s,a)(x) (A.27)

≤− c̃(s, a) + ‖FR̂(s,a) − FR(s,a)‖∞ + ‖P̂ (·|s, a)− P (·|s, a)‖1, (A.28)

which is non-positive as long as c̃(s, a) ≥ ‖FR̂(s,a) − FR(s,a)‖∞ + ‖P̂ (·|s, a) − P (·|s, a)‖1 which

completes the proof.

Lemma 5. Let F be a CDF of a bounded non-negative random variable and ν ∈ R be arbitrary.

Then EF [(ν −X)+] =
∫ ν

0
F (y)dy. Hence, one can write the conditional value at risk of a variable

X ∼ F for any CDF F with F (0) = 0 as

CVaRα(F ) = sup
ν

{
1

α

∫ ν

0

(α− F (y))dy

}
. (A.29)

Lemma 5. We rewrite EF [(ν −X)+] as follows

EF [(ν −X)+] =EF [(ν −X)1{X ≤ ν}] = νF (ν)− EF [X1{X ≤ ν}] (A.30)

1
=νF (ν)− EF

[
1{X ≤ ν}

∫ ∞
0

1{X > y}dy
]

(A.31)

2
=νF (ν)−

∫ ∞
0

PF [y < X ≤ ν] dy (A.32)

=νF (ν)−
∫ ν

0

(F (ν)− F (y))dy =

∫ ν

0

F (y)dy (A.33)

where 1 follows from a =
∫ a

0
dx =

∫∞
0

1{a > x}dx which holds for any a ≥ 0 and 2 uses Tonelli’s

theorem to exchange the two integrals. Plugging this identity into

ν − 1

α
EF [(ν −X)+] =

1

α

(
να−

∫ ν

0

F (y)dy

)
=

1

α

∫ ν

0

(α− F (y))dy (A.34)

and taking the sup over ν gives the desired result.

Lemma 6. Let F and G be the CDFs of two non-negative random variables and let νF , νG be a

maximizing value of ν in the definition of CVaRα(F ) and CVaRα(G) in Equation 2.1 respectively.

Then:

|CVaRα(F )− CVaRα(G)| ≤ 1

α

∫ max{F−1(α),G−1(α)}

0

|G(y)− F (y)|dy (A.35)
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≤max{F−1(α), G−1(α)}
α

sup
x
|F (x)−G(x)| (A.36)

Lemma 6. Assume w.l.o.g. that CVaRα(F )− CVaRα(G) ≥ 0. Denote by νF any maximizing value

of ν in the definition of CVaRα(F ). By Lemma 4.2 and Equation (4.9) in Acerbi and Tasche [2002],

a possible value of νF is F−1(α). Then we can write the differences in CVaR as

CVaRα(F )− CVaRα(G) ≤νF − α−1EF [(νF −X)+]− (νF − α−1EG[(νF −X)+]) (A.37)

=
1

α
(EG[(νF −X)+]− EF [(νF −X)+]). (A.38)

Using Lemma 5 in Equation (Equation A.38) gives

CVaRα(F )− CVaRα(G) ≤ 1

α

(∫ νF

0

G(y)dy −
∫ νF

0

F (y)dy

)
(A.39)

≤ 1

α

∫ νF

0

|G(y)− F (y)|dy ≤ νF
α

sup
y
|F (y)−G(y)|. (A.40)

We can in full analogy upper-bound CVaRα(G)−CVaRα(F ) and arrive at the desired statement.

Lemma 7. Let G and F be CDFs of non-negative random variables so that ∀x ≥ 0 : F (x) ≥ G(x).

Then for any α ∈ [0, 1], we have CVaRα(F ) ≤ CVaRα(G).

Proof. Consider now the following difference

1

α

∫ ν

0

(α−G(y))dy − 1

α

∫ ν

0

(α− F (y))dy =
1

α

∫ ν

0

(F (y)−G(y))dy ≥ 0. (A.41)

By Lemma 5, we have that

CVaRα(G)− CVaRα(F ) (A.42)

= sup
ν

{
1

α

∫ ν

0

(α−G(y))dy

}
− sup

ν

{
1

α

∫ ν

0

(α− F (y))dy

}
. (A.43)

Let νF denote a value of ν that achieves the supremum in 1
α

∫ ν
0

(α − F (y))dy (which exists by

Lemma 4.2 and Equation (4.9) in Acerbi and Tasche [2002]). Then

CVaRα(G)− CVaRα(F ) ≥ 1

α

∫ νF

0

(α−G(y))dy − 1

α

∫ νF

0

(α− F (y))dy ≥ 0. (A.44)

Lemma 8. Consider a sequence of CDFs {Fn} on x ∈ [Vmin, Vmax] with Vmin ≥ 0 that converges in

`2 distance to FO as n→∞. Then CVaRα(Fn)→ CVaRα(FO) as n→∞.



A.1. PROOF OF BASIC LEMMAS 93

Proof. Consider the sequence of Wasserstein d1 distance between the CDFs:

d1 (Fn, FZO ) =

∫ Vmax

Vmin

|Fn(x)− FO(x)|dx (A.45)

≤

(∫ Vmax

Vmin

|Fn(x)− FO(x)|2dx

)1/2(∫ Vmax

Vmin

1dx

)1/2

(A.46)

=
√
Vmax − Vmin`2(Fn, FO) (A.47)

Where the second line follows by Hölder’s inequality. The right hand side goes to 0 as n → ∞,

which implies convergence in Wasserstein d1 distance (p=1). Finally, using Lemma 6, convergence

of CVaR follows.

Lemma 9 (Difference in CVaR). Let F be the CDF of a random variable bounded by [0, U ] and F̂

be the empirical CDF obtained by n, i.i.d samples drawn from F . Let ε > 0 and G =
{

supx |F (x)−
F̂ (x)| ≤ ε

}
be the event that the empirical CDF is uniformly ε-close to the true CDF F . Define

F̃ (x) = 0 ∨ (F̂ (x)− ε1{x ∈ [0, U ]}). Then in event G the following inequality holds

|CVaRα(F )− CVaRα(F̃ )| ≤ 2F̃−1(α)ε

α
. (A.48)

Proof. By Lemma 6, the triangle-inequality and the definition of G and F̃

|CVaRα(F )− CVaRα(F̃ )| ≤ F̃
−1(α)

α
sup
x
|F (x)− F̃ (x)| (A.49)

≤ F̃
−1(α)

α
sup
x
|F (x)− F̂ (x)|+ F̃−1(α)

α
sup
x
|F̂ (x)− F̃ (x)| (A.50)

≤2F̃−1(α)ε

α
. (A.51)

Lemma 10 (Down-shift is optimistic for CVaR). Let F be the CDF of a random variable bounded

by [0, U ] and F̂ be the empirical CDF obtained by n, i.i.d samples drawn from F . Let ε > 0 and

G =
{

supx |F (x)− F̂ (x)| ≤ ε
}

be the event that the empirical CDF is uniformly ε-close to the true

CDF F . Define F̃ (x) = 0 ∨ (F̂ (x)− ε1{x ∈ [0, U ]}). Then in event G the following inequality holds

CVaRα(F ) ≤ CVaRα(F̃ ) (A.52)

Proof. By construction of F̃ , we have F̃ (x) ≤ F (x) for all x on G and hence the statement follows

by Lemma 7.
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A.2 Proof of Theorem 1

Theorem (1). Let the shift parameter in the optimistic operator be sufficiently large which is c =

O (ln(|S||A|/δ)). Then with probability at least 1 − δ, the iterates CVaRα((OcT̂ π)mZ0) converges

for any risk level α and initial Z0 ∈ Z to an optimistic estimate of the policy’s conditional value at

risk. That is, with probability at least 1− δ,

∀s, a : CVaRα((OcT̂ π)∞Z0(s, a)) ≥ CVaRα(Zπ(s, a)).

Theorem 1. By Lemma 7 and Lemma 3 by Bellemare et al. [2017], we know that Zi+1 ← OcT̂ πZi
converges to a unique fixed-point Z∞, independent of the initial Z0. Hence, without loss of generality,

we can choose Z0 = Zπ.

We proceed by first showing how our result will follow under a particular definition of c, and then

show what that definition is. Assume that we have obtained a value for c that satisfies the assumption

of Lemma 4, and let Z̃ = Zi and Z = Zπ. Then Lemma 4 implies that if FZi(s,a) ≤ FZπ(s,a) for all

(s, a), then also FZi+1(s,a) ≤ FZπ(s,a) for all (s, a). Thus, FZ∞(s,a) ≤ FZπ(s,a) for all (s, a). Finally,

we can use Lemma 7 to obtain the desired result of our proof statement, CVaRα(FZ∞(s,a)) ≥
CVaRα(FZπ(s,a)) for all (s, a).

Going back, we use concentration inequalities to determine the value of c that ensures the required

condition in Lemma 4 (expressed in Eq. (Equation A.1)). The DKW-inequality which give us that

for any (s, a) with probability at least 1− δ

‖FR(s,a) − FR̂(s,a)‖∞ ≤

√
1

2n(s, a)
ln

2

δ
. (A.53)

Further, the inequality by Weissman et al. [2003] gives that

‖P̂ (·|s, a)− P (·|s, a)‖1 ≤

√
2|S|
n(s, a)

ln
2

δ
. (A.54)

Combining both with a union bound over all |S × A| state-action pairs, we get that it is sufficient

to choose

c =
√

(1 + 4|S|) ln(4|S||A|/δ) ≥
√

2|S| ln(4|S||A|/δ) +
√

ln(4|S||A|/δ)/2 (A.55)

to ensure that c̃(s, a) ≥ ‖FR̂(s,a)−FR(s,a)‖∞+‖P̂ (·|s, a)−P (·|s, a)‖1 allowing us to apply Lemma 4.

However, we can improve this result by removing the polynomial dependency of c on the number

of states |S| as follows. Consider a fixed (s, a) and denote
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v(s′, x) :=
∑
a′∈A

π(a′|s′)FγZ(s′,a′)+R(s,a)(x)

where we set Z = Zπ. Our goal is to derive a concentration bound on

∑
s′∈S

(
P̂ (s′|s, a)− P (s′|s, a)

)
v(s′, x)

that is tighter than the bound derived from ‖P̂ (·|s, a)−P (·|s, a)‖1. Note that v is not a random

quantity and hence
∑
s′∈S

(
P̂ (s′|s, a)− P (s′|s, a)

)
v(s′, x) is a normalized sum of independent ran-

dom variables for any x. To deal with the continuous variable x which prevents us from applying a

union bound over x directly, we use a covering argument. Let K ∈ N be arbitrary and consider the

discretization set

X̄ = {x ∈ R | ∃k ∈ [K], ∃s′ ∈ S, ∀x′ < x, v(s′, x′) < k/K ≤ v(s′, x)}. (A.56)

Define v̄(s′, x) = v(s′,max{x′ ∈ X̄ : x′ ≤ x}) as the discretization of v at the discretization points

in X̄ . This construction ensures that the discretization error is uniformly bounded by 1/K, that

is, |v̄(s, x) − v(s, x)| ≤ 1/K holds for all s ∈ S and x ∈ [Vmin, Vmax]. Hence, we can bound for all

x ∈ [Vmin, Vmax]

∑
s′∈S

(
P̂ (s′|s, a)− P (s′|s, a)

)
v(s′, x) (A.57)

=
∑
s′∈S

(
P̂ (s′|s, a)− P (s′|s, a)

)
v̄(s′, x) (A.58)

+
∑
s′∈S

(
P̂ (s′|s, a)− P (s′|s, a)

)
(v(s′, x)− v̄(s′, x)) (A.59)

1

≤

√
1

2n(s, a)
ln
|X̄ |
δ

+ ‖P̂ (·|s, a)− P (·|s, a)‖1‖v(·, x)− v̄(·, x)‖∞ (A.60)

2

≤

√
1

2n(s, a)
ln
|X̄ |
δ

+
1

K

√
2|S|
n(s, a)

ln
2

δ
(A.61)

where in 1 , we applied Hoeffding’s inequality to the first term in combination with a union bound

over X̄ as v̄(·, x) can only take |X̄ | values in R|S|. The second term was bounded with Hölder’s

inequality and in 2 the concentration inequality from Eq. (Equation A.54) was used. Combining

this bound with Eq. (Equation A.53) by applying a union bound over all states and actions, we get

that picking

c ≥
√

1

2
ln

3|S||A|
δ

+

√
1

2
ln

3|S||A||X |
δ

+

√
2|S|
K2

ln
6|S||A|

δ
(A.62)
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is sufficient to apply Lemma 4. Since v(s′, ·) is non-decreasing, the size of the discretization set is

at most |X̄ | ≤ |S|K and by picking K =
√
|S|, we see that c = O (ln(|S||A|/δ)) is sufficient.

A.3 CVaR-Bandit

In this section we prove technical theorems presented in section 2.7.2 and present a new Bandit

algorithm, CVaR-Brown.

A.3.1 Proof of Theorem 2

Theorem (2). [DKW-UCB regret bound] Consider DKW-UCB on a stochastic k-armed bandit

problem with bounded rewards in range [0, U ]. For any horizon n, if δ = 1/n2 then the expected

CVaR-regret after the nth timestep is bounded by

Rαn ≤
K∑
i=1

4 ln(
√

2n)U2

α2∆α
i

+ 3

K∑
i=1

∆α
i

Additionally the CVaR-regret after the nth timsestep is also bounded by,

Rαn ≤ 4

√
nk ln(

√
2n)

U

α
+ 3

k∑
i

∆α
i

Proof. Our proof closely follows the proof of UCB from Lattimore and Szepesvári [2018]. Let cαi

denote the CVaR of arm i and F̂i,t denote the empirical CDF of the ith arm before timestep t.

Define c̃αi (t) as

c̃αi (t) = CVaRα(F̃i,t)

Where F̃i,t is defined as follows,

F̃i,t(x) =

(
F̂i,t −

√
ln(2/δ)

2Ti(t)
1{x ∈ [0, U ]}

)+

εi(t) =
U

α

√
2 ln(2/δ)

Ti(t)

First observe that CVaR decomposes as Rαn =
∑K
i=1 ∆α

i E[Ti(n)]. We want to bound E[Ti(n)] for

each suboptimal arm i. Without loss of generality we assume arm 1 is the optimal arm. Define the

”good event” Gi as:

Gi = {cα1 ≤ min
t∈[n]

c̃α1 (t)} ∩
⋃
i∈[K]

{c̃αi (ui) ≤ cα1 }
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We chose ui ∈ [n] later. Following Lattimore and Szepesvári [2018] we can show by contradiction

that if Gi then Ti(n) ≤ ui. First, since Ti(n) ≤ n we can write:

E[Ti(n)] = E[Ti(n)I{Gi}] + E[Ti(n)I{Gci}] ≤ ui + P(Gci )n (A.63)

Suppose Ti(n) > ui on event Gi, that means arm i was played more than ui times over n rounds

and so there must be a round t ∈ [n] where Ti(t− 1) = ui and At = i.

c̃αi = CVaRα

(
F̂i,t−1 −

√
ln(2/δ)

2Ti(t− 1)

)

= CVaRα

F̂i,ui −
√

ln(2/δ)

2ui


< cα1

< c̃α1 (t− 1)

Where the second line follows by Ti(t−1) = ui and the third and the fourth follows by the definition

of event Gi. Hence At = arg maxj c̃
α
j 6= i, which is a contradiction, so when Gi occurs Ti(n) ≤ ui.

It is left to show the probably of the complement of the good event is low. Consider Gci

Gci = {cα1 > min
t∈[n]

c̃α1 (t)} ∪ {c̃αi (ui) > cα1 } (A.64)

and let us first consider the probability of the first part

P
(
cα1 > min

t∈[n]
c̃α1 (t)

)
= P (∃t ∈ [n] : cα1 > c̃α1 (t)) (A.65)

and using optimism as shown in Lemma 10 with ε =
√

ln(2/δ)
2T1(t) we can upper bound this probability

as

≤P

(
∃t ∈ [n] : sup

x
|F̂1,t(x)− F1(x)| >

√
ln(2/δ)

2T1(t)

)
(A.66)

and combining a union bound over the first n ≥ T1(t) samples of arm 1 with the Dvoretzky-Kiefer-

Wolfowitz inequality, we further bound this as

≤ nδ. (A.67)

For the second term of the failure event in Equation (Equation A.64), recall ∆α
i = cα1 − cαi , and we

chose ui such that ∆α
i ≥ εi(ui)

P(c̃αi (ui) > cα1 ) = P(c̃αi (ui)− cαi > ∆α
i ) ≤ P(c̃αi (ui)− cαi > εi(ui)) (A.68)
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applying Lemma 9 and let ti be the round at which arm i was observed the uith time

≤ P

sup
x
|F̂i,ti(x)− Fi(x)| >

√
ln(2/δ)

2ui

 ≤ δ (A.69)

where the final bound follows from the Dvoretzky-Kiefer-Wolfowitz inequality. Hence, the probability

of the failure event is bounded as P(Gci ) ≤ (n+ 1)δ. Substituting this bound into (Equation A.63):

E[Ti(n)] ≤ ui + n(n+ 1)δ (A.70)

It remains to determine ui which can be chosen as the first integer that satisfies ∆α
i ≥ εi(ui):

ui =

⌈
2 ln(2/δ)U2

α2∆α
i

2

⌉

Substituting into (Equation A.70), and choosing δ = 1
n2 :

E[Ti(n)] ≤
⌈

2 log(2n2))U2

α2∆α
i

2

⌉
+ 2 ≤ 3 +

4 ln(
√

2n)U2

α2∆α
i

2

Substituting this into CVaR-regret decomposition, we get the desired bound

Rαn =

k∑
i=1

∆α
i E[Ti(n)] ≤

K∑
i=1

4 ln(
√

2n)U2

α2∆α
i

+ 3

K∑
i=1

∆α
i

One can also prove a sublinear regret bound that does not depend on the reciprocal of the gaps.

Rαn =

k∑
i=1

∆α
i E[Ti(n)] =

∑
i:∆α

i <∆

∆α
i E[Ti(n)] +

∑
i:∆α

i ≥∆

∆α
i E[Ti(n)]

≤ n∆ +
∑

i:∆α
i ≥∆

∆α
i E[Ti(n)]

≤ n∆ +
∑

i:∆α
i ≥∆

(
3∆α

i +
4 ln(
√

2n)U2

α2∆α
i

)

≤ n∆ +
4k ln(

√
2n)U2

α2∆
+

k∑
i=1

3∆α
i

≤ 4

√
nk ln(

√
2n)

U

α
+ 3

k∑
i=1

∆α
i

≤ 4
U

α

√
nk ln(

√
2n) + 3kU

Where the first inequality follows by
∑
i:∆α

i <∆ Ti(n) ≤ n, and the last line follows by choosing
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Algorithm 3: Brown-UCB for MABs

Input: Risk level α, reward range U , max # of pulls n
Output: Series of actions A1, A2, . . . An.

1 Choose each arm once.
2 Initialize t = 1, Set δ = 1/n2.
3 for t = 1, . . . , n do
4 for i = 1, . . . , k do

5 UCBBrown
i (t) = CVaRα(F̂i,t) + U

√
5 log(3/δ)
αTi(t)

;

6 Play action At = argmaxi UCBαi (t);
7 Update empirical CDF of arm Ai;

∆ = U
α

√
4k ln(

√
2n)

n .

A.3.2 Brown-UCB

The Brown-UCB algorithm presented in section 2.7.4 uses the upper confidence bound presented in

Brown [2007]. Similar to Cassel et al. [2018] we compute the empirical CVaR of each arm and add

an optimism bonus to build an upper confidence bound.

UCBBrown
i (t) = CVaRα(F̂i,t) + U

√
5 log(3/δ)

αTi(t)

we use δ = 1/n2. Algorithm 3 describes the algorithm.

Theorem 6 (Brown-UCB regret bound). Consider Brown-UCB on a stochastic k-armed bandit

problem with bounded rewards in range [0, U ]. For any horizon n, if δ = 1/n2 then the expected

CVaR-regret after the nth timestep is bounded by

Rαn ≤
K∑
i=1

40 ln (
√

3n)U2

α∆α
i

+ 3

K∑
i=1

∆α
i

Additionally the CVaR-regret after the nth timsestep is also bounded by,

Rαn ≤ 4

√
10kn ln (

√
3n)

α
U + 3KU

Proof. Our proof style mimics theorem A.3.1. Let cαi denote the CVaR of arm i, and ĉαi (t) be the

empirical CVaR of the ith arm before timestep t. First, we observe that the CVaR-regret decomposes

as Rαn =
∑k
i=1 ∆α

i E[Ti(n)]. The general strategy we use is to bound E[Ti(n)] for each suboptimal

arm i. To do this, we define the “good” event
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Gi = {cα1 < min
t∈[n]

UCBα1 (t)} ∩ {UCBαi (ui) < cα1 } (A.71)

where ui ∈ [n] is a constant we will choose later. We need to show two things, first if Gi occurs,

then Ti(n) ≤ ui. Second, The complement event Gci occurs with low probability (governed by our

future choice of ui). Because Ti(n) ≤ n, we will have

E[Ti(n)] = E[I{Gi}Ti(n)] + E[I{Gci}Ti(n)] ≤ ui + P(Gci )n. (A.72)

For the case where Gi is true, we can show by contradiction that Ti(n) ≤ ui, similar to Lattimore

and Szepesvári [2018]. The next step is to upper bound P(Gci ). By its definition,

Gci = {cα1 ≥ min
t∈[n]

UCBα1 (t)} ∪ {UCBαi (ui) ≥ cα1 }

The first set can be decomposed into a union of inequalities
⋃n
t=1{cα1 ≥ UCBα1 (t)}. We apply

the concentration inequality from Brown [2007, Theorem 4.2]. Combining all probability bounds of

individual events with a union bound, we bound the probability of {cα1 ≥ mint∈[n] UCBα1 (t)} as nδ.

P
(
cα1 ≥ min

t∈[n]
UCBα1 (t)

)
≤ P

(
n⋃
t=1

{cα1 ≥ UCBα1 (t)}

)

≤
n∑
t=1

(
P(cα1 ≥ ĉα1 + U

√
5 ln(3/δ)

αt

)
≤ nδ

Since the second event is contained in {UCBαi (ui) ≥ cα1 } we can simply apply the Brown [2007,

Corollary 3.1] concentration inequality to the second set as well. Assume that ui is chosen large

enough that ∆α
i − U

√
5 ln(3/δ)
αui

≥ c∆α
i :

P

ĉαi + U

√
5 ln(3/δ)

αui
≥ cα1

 = P

ĉαi − cαi ≥ ∆α
i − U

√
5 ln(3/δ)

αui


≤ P (ĉαi − cαi ≥ c∆α

i )

≤ exp

(
−2ui

α2(c∆α
i )2

U2

)
Substituting into (Equation A.72), we obtain

E[Ti(n)] ≤ ui + n

(
nδ + exp

(
−2ui

α2(c∆α
i )2

U2

))

Choosing ui =
⌈

5U2 ln(3/δ)
α(1−c)2(∆α

i )2

⌉
and c = 1

2 then yields

E[Ti(n)] ≤ 40U2 ln(
√

3n)

α(∆α
i )2

+ 3
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when combined with the CVaR-regret decomposition results in

Rαn =

k∑
i=1

∆α
i E[Ti(n)] ≤

K∑
i=1

40 ln(
√

3n)U2

α∆α
i

+ 3

K∑
i=1

∆α
i

To get a final result not dependent on each arm’s optimality gap, we decompose the CVaR-regret

further as

Rαn =

k∑
i=1

∆α
i E[Ti(n)]

=
∑

i:∆α
i <∆

∆α
i E[Ti(n)] +

∑
i:∆α

i ≥∆

∆α
i E[Ti(n)]

≤ n∆ +
∑

i:∆α
i ≥∆

(
3∆α

i +
40U2 ln(

√
3n)

α∆α
i

)

≤ 4

√
10kn ln(

√
3n)

α
U + 3

k∑
i=1

∆α
i

≤ 4

√
10kn ln(

√
3n)

α
U + 3KU

where the inequality follows because
∑
i:∆α

i <∆ Ti(n) ≤ n. Choosing ∆ =

√
40kU2 log(

√
3n)

nα and

simplifying produces the desired problem-independent bound.

A.3.3 Proxy Regret

Cassel et al. [2018] introduced the notion of proxy regret for risk aware multi-arm bandits as:

R̄π(n) = CVaRα(Fp?)− E[CVaRα(Fπn )]

where p? = argmaxp∈∆K−1
CVaRα(Fp) where ∆K−1 is the K − 1 dimensional simplex:

∆K−1 =

{
p = (p1, . . . , pK) ∈ RK |

K∑
i=1

pi = 1, pi ≥ 0

}

and

Fp =

K∑
i=1

piFi
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Fπn =
1

n

n∑
t=1

Fπt

Where F (i) is the distribution of arm i and πt is the policy at step t. Here we establish a formal

relation between this notion and CVaR-regret, defined in section 2.7.1.

Proposition 4. CVaR is a convex function of the CDF. Concretely, if
∑
αi

= 1 and αi ≥ 0:

CVaRα

(∑
i

αiFi(x)

)
≤
∑
i

αi CVaRα(Fi(x))

Proof. Define the mixture distribution F̂ (x) =
∑
i αiFi(x):

CVaRα(
∑
i

αiFi(x)) =
1

α

∫ F̂−1(α)

0

(α−
∑
i

αiFi(x))dx

=
1

α

∫ F̂−1(α)

0

∑
i

αi(α− Fi(x))dx

=
∑
i

αi
α

∫ F̂−1(α)

0

(α− Fi(x))dx

≤
∑
i

αi
α

∫ Fi
−1(α)

0

(α− Fi(x))dx

=
∑
i

αi CVaRα(Fi(x))

Where the last inequality followed by the fact that
∫ y

0
(α−F (x))dx attains its maximum at F−1(y)

Proposition 5. Consider a notion of proxy regret R̄π(n) defined in [Cassel et al., 2018] as:

R̄π(n) = E[CVaRα(Fp?)− CVaRα(Fπn )]

The notion of regret Rαn defined in equation 2.11 satisfies the following inequality.

R̄π(n) ≥ 1

n
Rnα

Proof. First note that By the convexity of CVaR shown in proposition 4 we have CVaRα(Fp?) =

CVaRα (Fi?) where i? = argmaxi CVaRα(Fi).

CVaRα(Fp?) = CVaRα

(
K∑
i=1

p?iFi

)
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≤
K∑
i=1

p?i CVaRα (Fi)

≤ max
i

CVaRα (Fi)

The bound is tight by setting p∗i? = 1 and p∗i = 0 : i 6= i?. Then by using the linearity of expectation

and the convexity of CVaR we have:

R̄π(n) = CVaRα(Fp?)− E[CVaRα(Fπn )]

= CVaRα (Fi?)− E[CVaRα(Fπn )]

= CVaRα (Fi?)− E[CVaRα

(
1

n

n∑
t=1

Fπ(t)

)
]

≥ CVaRα (Fi?)− 1

n
E[

n∑
t=1

CVaRα (Fπi)]

=
1

n

(
nCVaRα (Fi?)− E[

n∑
t=1

CVaRα Fπi)]

)
=

1

n
Rnα

This completes the proof.

Here we reiterate and prove the proposition 2.

Proposition (2). Consider a stochastic K-armed bandit problem with rewards bounded in [0, U ].

For any given horizon n and risk level α, both CVaR-UCB and U-UCB incur proxy regret with

O( logn
n ) and O(1/α2) dependency on the horizon and risk level, respectively.

Proof. First note that proxy regret decomposes as (Equation 15 in Cassel et al. [2018]):

R̄π ≤
L

n

∑
i 6=i?

E[Ti(n)]||Fi? − Fi||

Where i? = arg maxi CVaRα(Fi) is the optimal arm, and:

L = b

(
1 + max

i,j∈{1,...,K}
||Fi − Fj ||q−1

)
||F || = max{||F ||∞,

∫ 0

−∞
xdF}

For CVaRα, q = 2 and b = 1
α (1 + 3

min {α,1−α} ) (proposition 4 in Appendix E.2. Cassel et al. [2018]).

Following results from Theorem A.3.1, follows that for CVaR-UCB:

R̄π ≤
L

n

∑
i6=i?

(
3 +

4 log(
√

2n)

α2∆2
i

Ui

)
||Fi? − Fi||
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The right hand side has O(1/α2) and O(log(n)/n) dependency on the risk level and horizon, respec-

tively.

Similarly for U-UCB we have (Theorem 2 in Cassel et al. [2018])

R̄U−UCB ≤
L

n

∑
i 6=i?

(
α′ log n

φ(∆i/2)
+
α′ + 6

α′ − 2

)
||Fi? − Fi||

For α′ ≥ 2. Where

φ(y) = min{a(
y

2b
)2, a(

y

2b
)2/q}

For CVaRα we have b ≤ 1
α and q = 2, which yields φ(∆i/2) ≤ aα2∆2

i . Hence the RHS has O(1/α2)

and O(log(n)/n) dependency on the risk level and horizon.
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Supplementary Materials for

Chapter 3

B.1 Proof of basic lemmas

Before we give the proof of our main results, we give a set of essentially standard lemmas that we

build on in the rest of the chapter. In the following, we use a notational shorthand for (nested)

expectations under observable distributions: for all 1 ≤ t ≤ T and 1 ≤ t1 ≤ t2 ≤ T ,

Etat [X] := E[X | Ht, At = at] and (B.1a)

Et1:t2
at1:t2

[X] := Et1at1 [Et1+1
at1+1

[· · ·Et2at2 [X] · · · ]]. (B.1b)

Similarly, we write for all 1 ≤ t0 ≤ t1 ≤ t2 ≤ T

Et2at1:t2
[X] := E[X | Ht(A1:t1−1, at1:t2−1), At2 = at2 ] and (B.2a)

Et1:t2
at0:t2

[X] := Et1at0:t1
[Et1+1
at0:t1+1

[· · ·Et2at0:t2
[X] · · · ]]. (B.2b)

The cumulative rewards E[Y (Ā1:T )] under the candidate policy has an alternate representation,

which we draw on heavily in the rest of the proofs. See Section B.1.1 for a derivation.

Lemma 11. If sequential ignorability (Assumption 2) holds for the evaluation policy π̄, we have the

identity

E
[
Y (Ā1:T )

]
=
∑
a1:T

E

[
Y (a1:T )

T∏
t=1

π̄t(at | H̄t(a1:t−1))

]
.

105
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To ease notation, denote each integrand in the above sum by

Y (a1:T ; π̄) := Y (a1:T )

T∏
t=1

π̄t(at | H̄t(a1:t−1)). (B.3)

We will also use the following two identities heavily. Recall that we denote byW := {W (a1:T )}a1:T ,

the tuple of all potential outcomes, which takes values in W. See Section B.1.2 for a proof of the

following result.

Lemma 12. Let sequential ignorability (Assumption 2) hold for the behavioral policy π in the time

steps t1 : t2, where 1 ≤ t1 < t2 ≤ T . Then, for any measurable f :W → R

E[f(W ) | Ht1(a1:t1−1)] = E
[
Et1:t2
a1:t2

[f(W )] | Ht1(a1:t1−1)
]

for any a1:t2 ∈ A1 × · · · × At2 .

The following identity—whose proof we give in Section B.1.3—is a simple consequence of the defi-

nition of conditional expectations, and the tower law.

Lemma 13. For any measurable function f :W → R, and 1 ≤ t1 ≤ t2 ≤ T ,

Et1:t2
a1:t2

f(W ) = E

[
f(W )

t2∏
t=t1

1 {AT = at}
πt(at | Ht(a1:t−1))

| Ht1(a1:t1−1)

]

B.1.1 Proof of Lemma 11

Similar to the notational shorthand (Equation B.1), define

Eta1:t [X] := E[X | H̄t(a1:t−1), Āt = at] and Et:Ta1:T [X] = Eta1:t [E
t+1

a1:t+1
[· · ·ETa1:T [X] · · · ]].

Begin by noting that by definition of conditional expectation

E[Y (Ā1:T ) | H̄1] =
∑
a1∈A1

π̄(a1 | H̄1)E[Y (a1, Ā2:T ) | H̄1, Ā1 = a1]

=
∑
a1∈A1

π̄(a1 | H̄1)E1

a1 [Y (a1, Ā2:T )],

and similarly, conditioning on H̄2(a1) = (S1, Ā1 = a1, S2(a1)) yields

E[Y (a1, Ā2:T ) | H̄2(a1)] =
∑
a2∈A2

π̄2(a2 | H̄2(a1))E[Y (a1:2, Ā3:T ) | H̄2(a1), Ā2 = a2]

=
∑
a2∈A2

π̄2(a2 | H̄2(a1))E2

a1:2 [Y (a1:2, Ā3:T )].
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From the tower law, the above two equalities yield

E[Y (Ā1:T )] = E

[ ∑
a1∈A1

π̄1(a1 | H̄1)×

E

[ ∑
a2∈A

π̄2(a2 | H̄2(a1)) · E[Y (a1:2, Ā3:T ) | H̄2(a1), Ā2 = a2]

∣∣∣∣∣H̄1, Ā1 = a1

]]

= E

[ ∑
a1∈A1

π̄1(a1 | H̄1)E1

a1

[ ∑
a2∈A

π̄2(a2 | H̄2(a1)) · E2

a1:2 [Y (a1:2, Ā3:T )]

]]
.

Proceeding iteratively as before and expanding each E[Y (a1:t−1, Āt:T ) | H̄t(a1:t−1)], we arrive at

E[Y (Ā1:T )] =

E

[ ∑
a1∈A1

π̄1(a1 | H̄1)E1

a1

[
E2

a1:2

[ ∑
a2∈A2

π̄2(a2 | H̄2(a1))E3

a1:3×[
· · ·

∑
aT∈AT

π̄T (aT | H̄T (a1:T−1))ETa1:T [Y (a1:T )]

]]]]
.

Now, we proceed backwards from the inner most expectation to take the outer sum inside the

expectation. By Assumption 2, we have

∑
aT∈AT

π̄T (aT | H̄T (a1:T−1))ETa1:T [Y (a1:T )]

=
∑

aT∈AT

π̄T (aT | H̄T (a1:T−1)) · E

[
Y (a1:T )

∣∣∣∣∣ H̄T (a1:T−1)

]

= E

[ ∑
aT∈AT

π̄T (aT | H̄T (a1:T−1)) · Y (a1:T )

∣∣∣∣ H̄T (a1:T−1)

]
.

Noting that E[· | H̄T (a1:T−1)] = E[· | H̄T−1(a1:T−2), ST (a1:T−1), ĀT−1=aT−1], the tower law and

preceding display yield

ET−1

a1:T−1

[ ∑
aT∈AT

π̄T (aT | H̄T (a1:T−1)) · ETa1:T [Y (a1:T )]

]

= ET−1

a1:T−1

[ ∑
aT∈AT

π̄T (aT | H̄T (a1:T−1)) · Y (a1:T )

]
.

We repeat an identical process for the sum over aT−1. Similarly as above, applying Assumption 2
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gives

∑
aT−1∈AT−1

π̄T−1(aT−1 | H̄T−1(a1:T−2)) · ET−1

a1:T−1

[ ∑
aT∈AT

π̄T (aT | H̄T (a1:T−1)) · Y (a1:T )

]

= E
[ ∑
aT−1∈AT−1

π̄T−1(aT−1 | H̄T−1(a1:T−2))

∑
aT∈AT

π̄T (aT | H̄T (a1:T−1)) · Y (a1:T )

∣∣∣∣ H̄T−1(a1:T−2)
]
.

By the tower law, we again get

ET−2

a1:T−2

 ∑
aT−1∈AT−1

π̄T−1(aT−1 | H̄T−1(a1:T−2))ET−1

a1:T−1

[ ∑
aT∈AT

π̄T (aT | H̄T (a1:T−1)) · Y (a1:T )

]
= ET−2

a1:T−2

 ∑
aT−1∈AT−1

π̄T−1(aT−1 | H̄T−1(a1:T−2)) ·
∑

aT∈AT

π̄T (aT | H̄T (a1:T−1)) · Y (a1:T )

 .
Iterating the above process over the indices t = T − 2, . . . , 1, we arrive at the desired formula.

B.1.2 Proof of Lemma 12

From the tower law and sequential ignorability of π,

E[f(W ) | Ht1(a1:t1−1)] = E[f(W ) | Ht1(a1:t1−1), At1 = at1 ]

= E[E[f(W ) | Ht1+1(a1:t1)] | Ht1(a1:t1−1), At1 = at1 ]

Applying the tower law to the inner expectation, and applying sequential ignorability again, we get

E[f(W ) | Ht1+1(a1:t1)] = E [E[f(W ) | Ht1+2(a1:t1+1)] | Ht1+1(a1:t1), At1+1 = at1+1]

Plugging this back into the original display, we have

E[f(W ) | Ht1(a1:t1−1)] = Et1:t1+1
a1:t1+1 [E[f(W ) | Ht1+2(a1:t1+1)]]

Repeating this argument over t = t1 + 2, . . . , t2, we conclude the result.
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B.1.3 Proof of Lemma 13

From the definition of conditional expectations, we have

E[f(W ) | Ht(a1:t−1), At = at] = E
[
f(W )

1 {At = at}
πt(at | Ht(a1:t−1))

| Ht(a1:t−1)

]
.

The result follows by applying this equality at t = t2, applying the tower law, and iterating the same

argument over t = t2 − 1, . . . , t1.

B.2 Proof of key identities

B.2.1 Proof of Lemma 1

Recalling the notation (Equation B.3), sequential ignorability of π̄ and Lemma 11 gives the following

representation

E
[
Y (Ā1:T )

]
=
∑
a1:T

E [Y (a1:T ; π̄)] .

We deal with each term E[Y (a1:T ; π̄)] in the summation separately, for each fixed sequence of actions

a1:T . From sequential ignorability of π and Lemma 12,

E[Y (a1:T ; π̄)] = E[E1
a1 [· · ·ETa1:T [Y (a1:T ; π̄)] · · · ]] = E[E1:T

a1:T [Y (a1:T ; π̄)]].

Applying Lemma 13, we get

E[Y (a1:T ; π̄)] = E

[
Y (a1:T ; π̄)

T∏
t=1

1 {At = at}
πt(at | Ht(a1:t−1))

]
.

Summing the preceeding display over a1:T , we obtain the desired result.

B.2.2 Proof of Proposition 3

From Lemma 11, we have

E[Y (Ā1:T )] = E

[∑
a1:T

Y (a1:T )

T∏
t=1

π̄t(at | H̄t(a1:t−1))

]
.
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Since sequential ignorability for π holds at any t < t?, Lemma 12 implies that the preceeding display

is equal to

E

 ∑
a1:t?−1

E1:t?−1
a1:t?−1

[∑
at?:T

Y (a1:T )

T∏
t=1

π̄t(at | H̄t(a1:t−1))

] .
Applying Lemma 13 to the inner expectations, we get

E[Y (Ā1:T )] = E

 ∑
a1:t?−1

t?−1∏
t=1

1 {At = at}
πt(at | Ht(a1:t−1))

∑
at?:T

Y (a1:T )

T∏
t=1

π̄t(at | H̄t(a1:t−1))


= E

[
t?−1∏
t=1

π̄t(At | H̄t(A1:t−1))

πt(At | Ht)

∑
at?:T

Y (A1:t?−1, at?:T )

T∏
t=t?

π̄t(at | H̄t(A1:t?−1, at?:t−1))

]
.

From the tower law, we arrive at

E[Y (Ā1:T )] = E

[
E

[
t?−1∏
t=1

π̄t(At | H̄t(A1:t−1))

πt(At | Ht)

∑
at?:T

Y (A1:t?−1, at?:T )

T∏
t=t?

π̄t(at | H̄t(A1:t?−1, at?:t−1))

∣∣∣∣∣ Ht?

]]

= E

[
t?−1∏
t=1

π̄t(At | H̄t(A1:t−1))

πt(At | Ht)
E

[ ∑
at?:T

Y (A1:t?−1, at?:T )

T∏
t=t?

π̄t(at | H̄t(A1:t?−1, at?:t−1))

∣∣∣∣∣ Ht?

]]
. (B.5)

Applying the tower law to the inner expectation in the final display, we can write

E

[∑
at?:T

Y (A1:t?−1, at?:T )

T∏
t=t?

π̄t(at | H̄t(A1:t?−1, at?:t−1))

∣∣∣∣∣ Ht?

]

= E

[
E

[∑
at?:T

Y (A1:t?−1, at?:T )

T∏
t=t?

π̄t(at | H̄t(A1:t?−1, at?:t−1))

∣∣∣∣∣ Ht? , At?

] ∣∣∣∣∣ Ht?

]
=

∑
at? ,a

′
t?

π̄t?(at? | H̄t?(A1:t?−1))πt?(a′t? | Ht?)

× E

 ∑
at?+1:T

Y (A1:t?−1, at?:T )

T∏
t=t?+1

π̄t(at | H̄t(A1:t?−1, at?:t−1))

∣∣∣∣∣ Ht? , At? = a′t?


=

∑
at? ,a

′
t?

π̄t?(at? | H̄t?(A1:t?−1))πt?(a′t? | Ht?)
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× E

[
L(W ;Ht? , at? , a

′
t?)

∑
at?+1:T

Y (A1:t?−1, at?:T )×

T∏
t=t?+1

π̄t(at | H̄t(A1:t?−1, at?:t−1))

∣∣∣∣∣ Ht? , At? = at?

]

where in the last equality, we used the definition

L(·;Ht? , at? , a
′
t?) :=

dPW (· | Ht? , At? = a′t?)

dPW (· | Ht? , At? = at?)
.

Again, by the tower law,

E

[
L(W ;Ht? , at? , a

′
t?)

∑
at?+1:T

Y (A1:t?−1, at?:T )

T∏
t=t?+1

π̄t(at | H̄t(A1:t?−1, at?:t−1))

∣∣∣∣∣ Ht? , At? = at?

]

= E

[
E
[
L(W ;Ht? , at? , a

′
t?)

∑
at?+1:T

Y (A1:t?−1, at?:T )

×
T∏

t=t?+1

π̄t(at | H̄t(A1:t?−1, at?:t−1))
∣∣∣Ht?+1(A1:t?−1, at?)

] ∣∣∣∣∣ Ht? , At? = at?

]

From sequential ignorability of π for t > t? and Lemma 12, the preceeding display is equal to

E

[ ∑
at?+1:T

Et
?+1:T
at?:T

L(W ;Ht? , at? , a
′
t?)Y (A1:t?−1, at?:T )

T∏
t=t?+1

π̄t(at | H̄t(A1:t?−1, at?:t−1))

∣∣∣∣∣ Ht? , At? = at?

]
.

From Lemma 13, we can rewrite the above expression as

E

[
L(W ;Ht? , at? , a

′
t?)Yt?(at?)

T∏
t=t?+1

π̄t(At | H̄t(A1:t?−1, at? , At?+1:t))

πt(At | Ht(A1:t?−1, at? , At?+1:t))

∣∣∣∣∣ Ht? , At? = at?

]
.

Plugging these expressions back into the equality (Equation B.5), we obtain the result.
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B.3 Proof of bounds under unobserved confounding

B.3.1 Naive bound

We show the below more general result.

Lemma 14. Let Assumptions 2, 3, 4 hold. Then, we have

E[Y (Ā1:T )] ≥ E

[
Y (A1:T )

T∏
t=1

π̄t(At | H̄t(A1:t−1))

πt(At | Ht)(Γ
−1
t 1 {Y (A1:T ) < 0}+ Γt1 {Y (A1:T ) > 0})

]
.

Proof of Lemma From an identical argument as the proof of Lemma 1, Assumption 3 yields

E[Y (Ā1:T )] = E

[
Y (A1:T )

T∏
t=1

π̄t(At | H̄t(A1:t−1), Ut)

πt(At | Ht, Ut)

]
.

From Assumption 2, the preceeding display is equal to

E[Y (Ā1:T )] = E

[
Y (A1:T )

T∏
t=1

π̄t(At | H̄t(A1:t−1))

πt(At | Ht, Ut)

]
. (B.6)

Now, we bound πt(At | Ht, Ut) by πt(At | Ht). Assumption 4 implies

πt(at | Ht, Ut = ut)πt(a
′
t | Ht, Ut = u′t) ≤ Γtπt(a

′
t | Ht, Ut = ut)πt(at | Ht, Ut = u′t).

Multiplying by pUt(u
′
t | Ht) on both sides and integrating over u′t, we get

πt(at | Ht, Ut = ut)πt(a
′
t | Ht) ≤ Γtπt(a

′
t | Ht, Ut = ut)πt(at | Ht).

Summing over a′t on both sides, we conclude that

πt(at | Ht, Ut = ut) ≤ Γtπt(at | Ht).

almost surely, for any t, at, Ht, ut. Using this relation to lower bound expression (Equation B.6), we

obtain the result.

B.3.2 Proof of Theorem 3

By rewriting the original infimization problem over L(W ;Ht?) to L(W,At?+1:T ;Ht?), we have

η?(Ht? ; at?) = inf
L≥0

{
E

[
L(W,At?+1:T ;Ht?)Y (A1:T )

T∏
t=t?+1

ρt

∣∣∣ Ht? , At? = at?

]
:

E[L(W,At?+1:T ;Ht?) | Ht? , At? = at? ] = 1,
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L(w, at?+1:T ;Ht?) = L(w, a′t?+1:T ;Ht?),

L(w, at?+1:T ;Ht?) ≤ ΓL(w′, a′t?+1:T ;Ht?) a.s. all w, at?+1:T , w
′, a′t?+1:T

}
.

Relaxing the equality constraint L(w, at?+1:T ;Ht?) = L(w, a′t?+1:T ;Ht?), we arrive at

η?(Ht? ; at?) ≥ inf
L≥0

{
E

[
L(W,At?+1:T ;Ht?)Y (A1:T )

T∏
t=t?+1

ρt

∣∣∣ Ht? , At? = at?

]
:

E[L(W,At?+1:T ;Ht?) | Ht? , At? = at? ] = 1,

L(w, at?+1:T ;Ht?) ≤ ΓL(w′, a′t?+1:T ;Ht?) a.s. all w, at?+1:T , w
′, a′t?+1:T

}
.

The preceeding optimization problem is convex, and Slater’s condition holds for L ≡ 1. By

strong duality [Luenberger, 1969, Thm. 8.6.1 and Problem 8.7], we obtain the dual formulation

sup
µ

inf
L≥0

{
E

[
L(W,At?+1:T ;Ht?)

(
Y (A1:T )

T∏
t=t?+1

ρt − µ

) ∣∣∣ Ht? , At? = at?

]
+ µ :

L(w, at?+1:T ;Ht?) ≤ ΓL(w′, a′t?+1:T ;Ht?) a.s. all w, at?+1:T , w
′, a′t?+1:T

}
.

By inspection, the solution to the inner infimum takes the form

L(w, at?+1:T ;Ht?) = c

(
Γ1

{
Y (A1:T )

T∏
t=t?+1

ρt − µ < 0

}
+ 1

{
Y (A1:T )

T∏
t=t?+1

ρt − µ ≥ 0

})

for some constant c > 0. Let `′Γ(z) := (z)+ − Γ(z)−, the derivative of the weighted squared loss

`Γ(z) = 1
2 (Γ(z)2

− + (z)2
+). Plugging the preceeding display into the dual formulation, we get

sup
µ

inf
c≥0

{
cE

[
`′Γ

(
Y (A1:T )

T∏
t=t?+1

ρt − µ

) ∣∣∣ Ht? , At? = at?

]
+ µ

}

= sup
µ

{
µ : E

[
`′Γ

(
Y (A1:T )

T∏
t=t?+1

ρt − µ

) ∣∣∣ Ht? , At? = at?

]
≥ 0

}
.

Since the function µ 7→ E

[
`′Γ

(
Y (A1:T )

∏T
t=t?+1 ρt − µ

) ∣∣∣ Ht? , At? = at?

]
is strictly decreasing, the

optimal solution (and its value) in the preceeding display is given by the unique zero of this function.
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We now show that the solution to our loss minimization problem

κ(Ht? ; at?) = argmin
f(Ht? )

{
E

[
1 {At? = at?}
πt?(at? | Ht?)

× `Γ

(
Y (A1:T )

T∏
t=t?+1

ρt − f(Ht?)

)]

= E

[
E

[
`Γ

(
Y (A1:T )

T∏
t=t?+1

ρt − f(Ht?)

) ∣∣∣∣∣ Ht? , At? = at?

]]}

is in fact the unique zero of the function µ 7→ E

[
`′Γ

(
Y (A1:T )

∏T
t=t?+1 ρt − µ

) ∣∣∣Ht? , At? = at?

]
. The

(almost sure) uniqueness of the solution follows from strong convexity of `Γ. Since the optimization

is over all Ht? -measurable functions, the argmin is given by

argmin
f(Ht? )

E

[
`Γ

(
Y (A1:T )

T∏
t=t?+1

ρt − f(Ht?)

) ∣∣∣∣∣ Ht? , At? = at?

]
.

So long as

E[Y (A1:T )2
T∏

t=t?+1

ρ2
t | At? = at? , Ht? ] <∞ almost surely

first order optimality conditions of this loss minimization problem is equivalent to

E

[
`′Γ

(
Y (A1:T )

T∏
t=t?+1

ρt − f(Ht?)

) ∣∣∣ Ht? , At? = at?

]
= 0

which gives our result.

B.3.3 Proof of Theorem 4

Our result is based on epi-convergence theory [King and Wets, 1991, Rockafellar and Wets, 1998],

which shows (uniform) convergence of convex functions, and solutions to convex optimization prob-

lems.

Definition 2. Let {An} be a sequence of subsets of Rd. The limit supremum (or limit exterior or

outer limit) and limit infimum ( limit interior or inner limit) of the sequence {An} are

lim sup
n

An :=
{
v ∈ Rd | lim inf

n→∞
dist(v,An) = 0

}
and

lim inf
n

An :=

{
v ∈ Rd | lim sup

n→∞
dist(v,An) = 0

}
.

The epigraph of a function h : Rd → R ∪ {+∞} is epih := {(x, t) ∈ Rd × R | h(x) ≤ t}. We say
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limnA = A∞ if lim supnAn = lim infnAn = A∞ ⊂ Rd. We define a notion of convergence for

functions in terms of their epigraphs.

Definition 3. A sequence of functions hn epi-converges to a function h, denoted hn
epi→ h, if

epih = lim inf
n→∞

epihn = lim sup
n→∞

epihn. (B.7)

If h is proper (domh 6= ∅), epigraphical convergence (Equation B.7) is characterizaed by pointwise

convergence on a dense set.

Lemma 15 (Theorem 7.17, Rockafellar and Wets [1998]). Let hn : Rd → R, h : Rd → R be closed,

convex, and proper. Then hn
epi→ h is equivalent to either of the following two conditions.

(i) There exists a dense set A ⊂ Rd such that hn(v)→ h(v) for all v ∈ A.

(ii) For all compact C ⊂ domh not containing a boundary point of domh,

lim
n→∞

sup
v∈C
|hn(v)− h(v)| = 0.

The last characterization of epigraphical convergence is powerful as it gives convergence of solution

sets.

Lemma 16 (Theorem 7.31, Rockafellar and Wets [1998]). Let hn : Rd → R, h : Rd → R satisfy

hn
epi→ h and −∞ < inf h <∞. Let Sn(ε) = {θ | hn(θ) ≤ inf hn+ε} and S(ε) = {θ | h(θ) ≤ inf h+ε}.

Then lim supn Sn(ε) ⊂ S(ε) for all ε ≥ 0, and lim supn Sn(εn) ⊂ S(0) whenever εn ↓ 0.

From Lemmas 15, 16, it suffices to show that the expected loss function and its empirical coun-

terpart satisfies appropriate regularity conditions (proper and closed), and show that our empirical

loss pointwise converges to the population loss almost surely. Recall that Dn is the split of data used

to estimate π̂, and let D∞ be the σ-algebra defined by Dn as n → ∞. Our subsequent argument

will be conditional on D∞, and the event

E :=
{
π̂t → πt pointwise, ρ̂t ≤ 2C, and π̂t?(at? | Ht?) ∈ [(2C)−1, 1]

}
.

We assume w.l.o.g. (increasing C if necessary) that c ≤ (2C)−1. Note that P(E) = 1 by assumption.

First, note that since θ 7→ fθ is linear, θ 7→ `Γ(Y (A1:T )
∏T
t=t?+1 ρ̂t − fθ(Ht?)) is convex. Both

the empirical and population loss

θ 7→ Ên

[
1 {At? = at?}
π̂t?(at? | Ht?)

`Γ

(
Y (A1:T )

T∏
t=t?+1

ρ̂t − fθ(Ht?)

)]
=: ĥn(θ),

θ 7→ E

[
1 {At? = at?}
πt?(at? | Ht?)

`Γ

(
Y (A1:T )

T∏
t=t?+1

ρt − fθ(Ht?)

)]
=: h(θ),
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are proper since they are nonnegative, and finite a.s. at θ = 0. Since the functions

θ 7→ 1 {At? = at?}
π̂t?(at? | Ht?)

`Γ

(
Y (A1:T )

T∏
t=t?+1

ρ̂t − fθ(Ht?)

)
,

θ 7→ 1 {At? = at?}
πt?(at? | Ht?)

`Γ

(
Y (A1:T )

T∏
t=t?+1

ρt − fθ(Ht?)

)
,

are continuous by linearity of θ 7→ fθ, dominated convergence shows continuity of both the empirical

loss ĥn(θ) (a.s.) and population loss h(θ).

Next, we show that the empirical plug-in loss converges pointwise to its population counterpart

almost surely. Since S(0) = {θ?} by hypothesis, Lemmas 15, 16 will give the final result. Defining

the function

hn(θ) := E

[
1 {At? = at?}
π̂t?(at? | Ht?)

`Γ

(
Y (A1:T )

T∏
t=t?+1

ρ̂t − fθ(Ht?)

)]
,

we write

|ĥn(θ)− h(θ)| ≤ |hn(θ)− h(θ)|+ |ĥn(θ)− hn(θ)|,

and show that each term in the right hand side converges to 0 almost surely.

To show that the first term goes to zero, note that since π̂t? → πt? a.s., we have πt?(at? | Ht) ≥
(2C)−1 a.s. for all at? . This gives

|hn(θ)− h(θ)| ≤

∣∣∣∣∣hn(θ)− E

[
1 {At? = at?}
πt?(at? | Ht?)

`Γ

(
Y (A1:T )

T∏
t=t?+1

ρ̂t − fθ(Ht?)

)]∣∣∣∣∣
+

∣∣∣∣∣E
[

1 {At? = at?}
πt?(at? | Ht?)

`Γ

(
Y (A1:T )

T∏
t=t?+1

ρ̂t − fθ(Ht?)

)]
− h(θ)

∣∣∣∣∣
≤ ΓC2E

[
|πt?(at? | Ht?)− π̂t?(at? | Ht?)| ·

(
Y (A1:T )2(2C)2T + 2|fθ(Ht?)|2

)
+ ΓCE

[ (
Y (A1:T )2(2C)T + 2|fθ(Ht?)|

)
· Y (A1:T ) ·

∣∣∣∣∣
T∏

t=t?+1

ρ̂t −
T∏

t=t?+1

ρt

∣∣∣∣∣
]
,

which has an integrable envelope function under our assumptions and conditional on E . By domi-

nated convergence, we have the result since π̂t → πt almost surely (and hence ρ̂t
a.s.→ ρt).

To show that the second term converges to zero, we use the following strong law of large numbers

for triangular arrays.

Lemma 17 (Hu et al. [1989, Theorem 2]). Let {ξni}ni=1 be a triangular array where Xn1, Xn2, . . .

are independent random variables for any fixed n. If there exists ξ such that |ξni| ≤ ξ and E[ξ2] <∞,
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then 1
n

∑n
i=1(ξni − E[ξni])

a.s.→ 0.

The random variable

1 {At? = at?}
π̂t?(at? | Ht?)

`Γ

(
Y (A1:T )

T∏
t=t?+1

ρ̂t − fθ(Ht?)

)

are i.i.d. for each trajectory, conditional on D∞. By convexity, the below random variable upper

bounds the preceeding display

ξ = 16Γ(2C)2T
(
fθ(Ht?)2 + Y (A1:T )2

)
on the event E . From hypothesis, we have E[ξ2 | D∞, E ] < ∞. Applying Lemma 17 conditional on

D∞ and E , we conclude

|ĥn(θ)− hn(θ)| a.s.→ 0.

Applying Lemmas 15, 16, we conclude that for any εn ↓ 0, lim infn→∞ dist(θ?, Sεn)
p→ 0 condi-

tional on D∞ and E . Now, note that for any ∆ > 0,

P
(
| lim inf
n→∞

dist(θ?, Sεn)| ≥ ∆
)

= P
(
| lim inf
n→∞

dist(θ?, Sεn)| ≥ ∆ | E
)

= E
[
P
(
| lim inf
n→∞

dist(θ?, Sεn)| ≥ ∆ | D∞, E
)
| E
]

= E
[
P
(
| lim inf
n→∞

dist(θ?, Sεn)| ≥ ∆ | D∞, E
)]

where the first and the last equality used since P(E) = 1. By dominated convergence, the preceeding

display goes to 0 as n→∞.
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