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Abstract

Strategic exploration methods in tabular reinforce-
ment learning provide guarantees for learning
near-optimal policies, but require visiting almost
all state-action pairs, which is intractable for large
state spaces. However, in many cases, the agent
receives reward only for transitions that saliently
affect the state, and thus only needs to explore
these transitions. We propose an exploration algo-
rithm motivated by tabular strategic exploration
methods which explores only these transitions in
an abstract Markov Decision Process, featuring a
small abstract state space and learned hierarchi-
cal macro-actions. For approaches that do not
use demonstrations, our algorithm achieves state-
of-the-art results in MONTEZUMA’S REVENGE,
one of the most challenging games in the Arcade
Learning Environment.

1. Introduction
Deep reinforcement learning (RL) algorithms achieve im-
pressive, often superhuman, performance in game playing
(Mnih et al., 2015) and robotics (Levine et al., 2016). How-
ever, they typically employ simple inefficient exploration
methods such as ε-greedy, which can take exponential time
to find reward. Consequently, these algorithms completely
fail on environments with extremely sparse rewards, such as
MONTEZUMA’S REVENGE (Bellemare et al., 2013), where
ε-greedy and similar exploration methods achieve no reward
even after millions of frames of training, whereas humans
score thousands of points (Hester et al., 2017).

In contrast, tabular exploration algorithms such as R-MAX
(Brafman & Tennenholtz, 2002) and MBIE-EB (Strehl &
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Littman, 2008) achieve provably efficient exploration, guar-
anteeing near-optimal policies in a bounded number of sam-
ples. However, these algorithms do not directly apply to
large state Markov Decision Processes (MDPs), because
they rely on visiting almost every state-action pair. Recent
extensions of tabular count-based exploration methods to
large state MDPs (Bellemare et al., 2016; Ostrovski et al.,
2017) achieve significant improvements for sparse-reward
tasks. However, these approaches can suffer from long-
term credit assignment and still significantly trail human
performance. We also draw motivation from tabular ex-
ploration algorithms, but propose a different exploration
strategy, guided by the observation below.

Tabular setting exploration algorithms require visiting al-
most every state-action pair because they implicitly assume
that reward can be high at any state-action pair. However,
this assumption generally does not hold for tasks with large
state-spaces such as Atari games. Instead, reward is typ-
ically given when some salient part of the state changes
(e.g. the agent reaches the next level or the agent obtains a
new item), not for trivial changes in the state (e.g. a pixel
flashes in the corner). This implies that efficient exploration
methods in the non-tabular setting need not explore all state-
action pairs, only those that lead to salient changes in the
state.

To explore just these state-action pairs, instead of directly ex-
ploring the high-dimensional state space with the provided
low-level actions, we propose to explore over the abstract
states that capture the salient part of the state (Figure 1a).
Notably, a single low-level action usually changes minute
details of the state without altering the abstract state. Since
we desire to explore the transitions between abstract states
(the transitions that saliently change the state), we learn
high-level macro-actions composed of many low-level ac-
tions to transition between abstract states. Effectively, we
operate in a much smaller abstract MDP, which summarizes
the original MDP via an abstraction function.

We evaluate our approach on MONTEZUMA’S REVENGE,1

one of the most challenging exploration games in the Ar-
cade Learning Environment (Bellemare et al., 2013), and

1Video highlights at https://sites.google.com/
view/hierarchy-driven-exploration
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achieve state-of-the-art performance for approaches with-
out demonstrations. We detail theoretical guarantees for
efficient exploration in an extended version of this paper.

2. Related Work
Exploration in Tabular Reinforcement Learning Ex-
ploration in tabular settings is well-understood through the
frameworks of optimism in the face of uncertainty (OFU)
(Brafman & Tennenholtz, 2002; Strehl et al., 2009) and pos-
terior sampling (Osband et al., 2013; Osband & Van Roy,
2016). OFU methods such as R-MAX (Brafman & Tennen-
holtz, 2002), MBIE (Strehl & Littman, 2005) and UCRL
(Jaksch et al., 2010) efficiently explore by providing bonuses
for exploring regions of uncertainty and provably yield near-
optimal policies in time polynomial in the size of the MDP.
Despite recent progress that has yielded much stronger
bounds(Azar et al., 2017; Dann et al., 2017), these methods
don’t scale well to the deep RL setting, where the size of
the MDP can be enormous.

Exploration in Deep Reinforcement Learning Recent
works (Bellemare et al., 2016; Tang et al., 2017; Ostrovski
et al., 2017) generalize optimism exploration approaches
from the tabular setting to the function approximation set-
ting. The exploration bonuses provide substantial improve-
ments over naive exploration methods, especially in sparse
reward environments. However, these methods can suffer
from long-term credit assignment, which we propose to ad-
dress with hierarchy. Other exploration methods (Osband
et al., 2016; Azizzadenesheli et al., 2018; Fortunato et al.,
2017) extend posterior sampling to deep RL, but do not show
substantial improvements in hard exploration environments.

Learning from Demonstrations Imitation learning meth-
ods (Abbeel & Ng, 2004) attempt to solve sparse reward
tasks by leveraging prior knowledge in the form of demon-
strations. Recent works leveraging demonstrations (Aytar
et al., 2018; Hester et al., 2017; Pohlen et al., 2018) achieve
impressive results on challenging domains such as MON-
TEZUMA’S REVENGE. However, they require extensive
prior knowledge as expert demonstrations for the exact task
at hand, which can be expensive or impossible to collect.
Additionally, these methods do not directly address the ex-
ploration problem, as the agent follows the demonstrated
trajectory instead of exploring for reward.

Hierarchical Reinforcement Learning Our work also
draws from hierarchical reinforcement learning (HRL) ideas
of state abstraction (Li et al.; Singh et al., 1995), action ab-
straction (Sutton, 1995; Sutton et al., 1999), and decompos-
ing tasks into subgoals (Dietterich, 2000). While HRL has
received a lot of attention over the years, learning the appro-
priate abstractions remains an open challenge. For example,

the Option-Critic architecture (Bacon et al., 2017) provides
an algorithm for automatically learning high-level actions
from scratch. However, the algorithm often degenerates to
trivial solutions. Feudal networks (Vezhnevets et al., 2017)
attempt to sidestep this issue by formulating sub-goals in
a latent space. Our work generally differs from prior work
on hierarchy with our focus on leveraging hierarchy for
strategic exploration by systematically producing subgoals
to explore different parts of the state space.

3. Setup
We assume an episodic finite-horizon MDP, 〈S,A,P, R〉,
where S is the state space, A the action space, P the tran-
sition function and R : S × A → R the reward function.
The goal of the agent is to learn a policy π : S → A that
maximizes the total expected reward Eπ[

∑T
t=0R(st, at)].

To distinguish from our learned macro-actions, we refer to
actions in the MDP as concrete actions.

We further assume existence of an abstraction function φ :
S → S̃, which captures the salient parts of concrete states
s ∈ S as abstract states s̃ ∈ S̃. We assume reward is 0
for all transitions within the same abstract state and that
all paths to the same abstract state yield approximately the
same reward. This can be trivially achieved by augmenting
the abstract state with reward. In this work we consider
pre-specified abstraction functions, but future work could
learn the abstraction.

4. Approach
Instead of directly exploring in the original MDP, we explore
in a small abstract MDP which consists of abstract states
and learn macro-actions that transition between the abstract
states. This enables us to ignore exploring trivial transitions
and focus our exploration on transitions that saliently change
the state and may contain reward.

To explore in the abstract MDP, we maintain the feasible set:
the set of abstract states that can be reached from the starting
abstract states with learned macro-actions, which initially
only includes the starting abstract states. When the feasible
set contains all reachable abstract states, we can recover a
near-optimal policy on the abstract MDP by navigating to
the game-winning state.

Consequently, our main objective is to add all reachable
abstract states to the feasible set. We achieve this by (1)
discovering potential transitions to new abstract states (Sec-
tion 4.1) and (2) learning macro-actions to perform these
transitions (Section 4.2). To enable planning, we maintain
estimates of the transition dynamics of the learned macro-
actions transitioning between abstract states, and the reward
dynamics for transition between two abstract states. Finally,
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(a) Each abstract state consists of many
concrete states. s̃1 is a degree-1 neighbor
of s̃0 because there is a transition from a
concrete state in s̃0 to a concrete state in
s̃1.

(b) The agent attempts to expand the fea-
sible set by learning a macro-action for
the transition (s̃0, s̃1).

(c) Degree-i transition (s̃0, s̃1) could not
be learned, so s̃2 and s̃3 were added as
degree-(i+ j) neighbors of s̃0 (assuming
s̃2 and s̃3 are degree-j neighbors of s̃1.

Figure 1. Green nodes represent abstract states. Shaded green nodes are in the feasible set. Dotted arrows represent abstract state neighbors.
Solid arrows represent a learned macro-action.

after computing a near-optimal policy on the abstract MDP,
we then map the abstract MDP policy to a policy on the
original MDP (Section 4.3).

4.1. Discovering Transitions

To extend the feasible set, we must first discover candidate
transitions to new abstract states to learn. To do this, for each
observed abstract state s̃, we maintain a count of the number
of times we have visited that abstract state: n(s̃), and a
set of degree-n neighboring abtract states: neighborsn(s̃),
initialized as empty, for each n = 1, 2, . . . , dmax.

We learn macro-actions to transition between abstract states
and their neighbors, extending the feasible set. We assume
that we discover every immediate neighbor of an abstract
state s̃ after visiting it enough times (n(s̃) ≥ T for some
threshold T ). We refer to such abstract states as exhausted,
and abstract states which have not been visited enough times
as active. In our experiments, we use T = 100.

Degree-1 neighbors. If an active abstract state in the fea-
sible set exists, we plan to reach this active abstract state
from the current abstract state using our transition dynamics
model over the abstract states and learned macro-actions,
replanning whenever the current plan fails. Upon reach-
ing the active abstract state, we take random actions for Te
timesteps (in our experiments, we use Te = 5), to discover
new nearby abstract states. During these Te timesteps, for
each observed transition (s̃, s̃′), we add s̃′ as a degree-1
neighbor of s̃, illustrated in Figure 1b.

Higher-degree neighbors. Sometimes, since the abstract
state abstracts away certain details of the state, it may be
preferable to skip learning transitions to immediate degree-1
neighbors by directly learning transitions to farther away
abstract states. For example, the agent can successfully
learn to transition from one side of a gap to the other. But
learning to transition from one side of the gap to the middle
of the gap can cause the agent navigate to the middle of

the gap and immediately fall to its death afterward. To
handle these cases, if we fail to learn a transition (s̃, s̃′)
after many attempts, we consider learning longer transitions
by adding the neighbors of s̃′ as higher-degree neighbors
of s̃. Formally, if s̃′ is a degree-i neighbor of s̃ and s̃′′ is
a degree-j neighbor of s̃′′, we add s̃′′ as a degree-(i + j)
neighbor of s̃ (Figure 1c). We only add neighbors up to a
maximum degree of dmax, which should be large enough
to handle the longest obstacle. In our experiments, we use
dmax = 15.

4.2. Macro-Action Learning

Once we have discovered neighboring transitions, we then
learn macro-actions for these transitions to extend the fea-
sible set. We place all learned macro-actions in the macro-
action repository, and reuse these macro-actions instead of
learning new macro-actions whenever possible.

Learning macro-actions for the neighbor transitions consist
of three stages: 1) First, we compute a priority for each
transition and select the transition with the highest priority
2) Then, we attempt to reuse macro-actions from the macro-
action repository to perform the transition. 3) Finally, if no
macro-action from the repository can perform the transition,
we learn a new macro-action. We begin with a description
of the representation of macro-actions and then describe the
three stages in order.

Macro-action representation. We represent a macro-
action πM (a|s, g) for the transition (s̃, s̃′) as a sub-policy,
which conditions on the concrete state s and goal g =
s̃′ − φ(s) to produce a concrete action a. At each timestep,
the macro-action receives sparse binary reward equal to 1
if φ(s) = s̃ and 0 otherwise. For each transition (s̃, s̃′) and
macro-action πM , we maintain an estimate of the reward
for successfully traversing the transition R(s̃, s̃′) (averaged
over all observations of the transition), the transition dy-
namics P (s̃′|πM , s̃) (empirically computed as the number



Hierarchy-Driven Exploration for Reinforcement Learning

of successes divided by the number of attempts), and the
number of training attempts n(s̃, s̃′, πM ). A macro-action
episode consists of executing the macro-action for a fixed
TM timesteps times the degree of the transition, starting
from the beginning of the transition s̃. Motivated by the
idea of controlling the environment from the intrinsic moti-
vation literature (Barto, 2013; Mohamed & Rezende, 2015;
Bellemare et al., 2016), we consider an episode a success
in the computation of the transition dynamics P (s̃′|πM , s̃)
if the macro-action stays in the goal abstract state s̃′ for at
least Thold timesteps. Failing to hold s̃′ for at least Thold
timesteps indicates a lack of control (e.g. falling down a
gap). We use Thold = 3 in our experiments.

Prioritizing transitions. To select the next transition to
learn, we maintain a priority queue of all of the discovered
neighboring transitions. The priority of a transition (s̃, s̃′)
is a linear combination of: 1) The reward of the transition
R(s̃′, s̃) plus the reward of the highest reward path from
the starting abstract states to s̃, according to our model
estimates, prioritizing higher rewards. 2) The number of
training attempts so far n(s̃, s̃′, πA), prioritizing fewer train-
ing attempts. 3) The length of the shortest path from the
starting abstract states to s̃, prioritizing longer paths. We
select the transition with the greatest priority.

Reusing the macro-action repository. Once we have se-
lected a transition (s̃, s̃′) to learn, we repeatedly navigate
to the beginning of the transition s̃ via planning with our
transition dynamics model, replanning as necessary, and
evaluate each macro-action in the repository on M episodes
(we use M = 30). If the empirical success rate P (s̃′|πM , s̃)
exceeds a threshold p for one of the macro-actions in the
repository, we associate πM with the transition and add s̃′

to the feasible set. In our experiments, we use p = 0.9.

Training a new macro-action. If none of the macro-
actions in the repository successfully perform the transition
with high probability, we begin training a new macro-action.
To train a new macro-action for a transition (s̃, s̃′), we again
repeatedly navigate to the beginning abstract state s̃. Then,
we alternate between rolling out macro-action episodes and
updating the macro-action. If at any point, the new macro-
action’s success rate exceeds the success threshold p, we
freeze the macro-action’s parameters and add it to the macro-
action repository.

4.3. Recovering an Original MDP Policy

Once we’ve learned a near-optimal policy over the abstract
MDP, we wish to recover a near-optimal policy over the orig-
inal MDP. Since the macro-actions in the abstract MDP are
implemented as sub-policies that produce concrete actions
in the original MDP, we have the following natural map-
ping from abstract MDP policies to original MDP policies.
Given an abstract MDP policy πabstract, and a concrete
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Figure 2. (a) Training curves for our approach on the hard ex-
ploration game MONTEZUMA’S REVENGE compared with the
asymptotic performance of DQN, DQN-CTS, and Abstract State
Count Bonus. (b) Whereas other approaches plateau, our approach
continues to learn more transitions in the Abstract MDP.

state s, executing πabstract(φ(s)) produces a macro-action
πA. Executing πA(s) then produces a concrete action in the
original MDP.

5. Experiments
We present our preliminary asymptotic performance results
on MONTEZUMA’S REVENGE, one of the most challenging
games in the Arcade Learning Environment (Bellemare
et al., 2013) below, with additional results in Appendix B.
We describe full experimental details in Appendix A.

5.1. Asymptotic Performance

We compare the asymptotic performance of our approach
with the best approach that does not leverage demonstra-
tions, DQN-CTS (Ostrovski et al., 2017). We note that two
works that incorporate demonstrations (Pohlen et al., 2018;
Aytar et al., 2018) achieve higher results, but we do not
compare with them because using demonstrations solves a
different problem. In order to evaluate the contribution of
the abstraction function φ, we additionally compare against
Abstract State Count Bonus, a modification of the source
code of (Tang et al., 2017), which maintains visit counts
for each abstract state and provides exploration bonuses
inversely proportional to the square root of the visit counts.
We include the performance of DQN (Mnih et al., 2015) for
reference. We report results from our approach averaged
over 4 seeds up to 6 billion frames in Figure 2a.

Our approach achieves state-of-the-art results for ap-
proaches that do not use demonstrations. We report on
significantly more frames than previous works, but our ap-
proach surpasses the previous state-of-the-art in under 1B
frames. Importantly, our approach continues to learn even af-
ter billions of frames (Figure 2b), whereas other approaches
completely plateau. The performance of Abstract State
Count Bonus suggests that our improved performance is not
just due to the abstraction function.
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and Munos, Rémi. Count-based exploration with neural
density models. arXiv preprint arXiv:1703.01310, 2017.

Pohlen, Tobias, Piot, Bilal, Hester, Todd, Azar, Moham-
mad Gheshlaghi, Horgan, Dan, Budden, David, Barth-
Maron, Gabriel, van Hasselt, Hado, Quan, John, Večerı́k,
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A. Experiment Details
We use a 5-tuple of the (agent’s x-coordinate, agent’s y-
coordinate, room number, agent’s inventory, objects in the
current room) as the abstract state representation. These
correspond to the RAM observations at locations 42, 43, 3,
65, and 66 respectively. We represent our macro-actions
as combining deep double q-networks (Van Hasselt et al.,
2016) with dueling networks (Wang et al., 2015), optimized
with Adam (Kingma & Ba, 2014). Additionally, we train
the macro-actions with count-based reward bonuses (Belle-
mare et al., 2016; Tang et al., 2017) inversely proportional to
the square root of the current abstract state visitation count.
The macro-actions receive the concrete state concatenated
with the goal as input. Following (Mnih et al., 2015), we
represent the concrete state inputs as the past four pixel
frames downsamples, cropped to size 84 by 84, and con-
verted to grayscale. Additionally, the macro-actions receive
a negative reward penalty for losing lives. We employ stan-
dard frame-skipping so that each concrete action is repeated
four times. For simplicity, we do not employ any forms of
stochasticity.

Many simple tasks, such as moving to the left, do not even
require pixel inputs to learn. To capitalize on this, we first
try to learn macro-actions that ignore the pixel inputs and
only condition on the goal. If the pixel-blind macro-action
fails to learn, we then train a macro-action that conditions
on the pixel inputs.

B. Additional Results
B.1. Reusing the Macro-Action Repository

Figure 3 and Figure 5 illustrate the reuse of macro-actions
from the macro-action repository. Most learned transitions
reuse common macro-actions (e.g. moving up or down a lad-
der), while there is a long tail of uncommon macro-actions
(e.g. jumping over a specific type of monster). Figure 4
depicts two common macro-actions. The agent successfully
reuses the same macro-action for moving up a ladder and
up a rope.

Figure 3. Number of reuses of each macro-action in the macro-
action repository.

Figure 4. The usages of two macro-actions in two different rooms.
The same blue macro-action moves up ladders and ropes. The
same red macro-action moves right in many abstract states. The
moving right macro-action notably does not apply when there is
an obstacle in its way.
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Figure 5. Number of learned transitions in abstract MDP compared
to the number of learned macro-actions.


