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Abstract

Risk sensitive objectives are often desirable in settings like healthcare or finance,
where agents are more sensitive to worst-case than average outcomes. However, cur-
rent risk-sensitive algorithms for multi-armed bandits utilize exploration bonuses
which do not adapt to the distributional nature of these objectives. In this paper,
we consider multi-armed bandits with a popular risk-sensitive objective called the
Conditional Value at Risk (CVaR). We present an novel optimism-based algorithm
for this setting: instead of adding bonuses to the CVaR estimate of each arm, we
apply optimism at the sample level, generating an optimistic set of samples for each
arm and then computing CVaR estimates from them instead. We present regret
bounds for our algorithm, along with experiments showing order-of-magnitude
improvements over baselines and prior work. Further experiments demonstrate
how sample-level optimism enables our algorithm to adapt to the shape of each
arm distribution in ways that exploration bonuses do not.

1 Introduction

In a K-armed bandit problem, an agent samples from one of K distributions at each turn. Informally,
the goal of the agent is to choose from “good” arms as often as possible. This requires the agent
to balance exploration of all possible arms with exploitation of the knowledge it has gained from
previous samples. This theoretical framework has applications ranging from clinical trial design [1]
to financial portfolio optimization [2] to optimizing websites [3].

The multi-armed bandits literature has traditionally used the expected value of an arm’s reward
distribution as the proxy for the "goodness" of that arm. However, in many interesting cases, it is
important to consider the full distributions over the potential rewards, and the desired objective may
be a risk-sensitive measure of this distribution. For example, a patient undergoing a surgery for a
knee replacement will (hopefully) only experience that procedure once or twice, and may well be
interested in the distribution of potential results for a single procedure, rather than what may happen
on average if he or she were to undertake that procedure hundreds of time. Finance and (machine)
control are other cases where interest in risk-sensitive outcomes are common.

A popular risk-sensitive measure of a distribution of outcomes is the Conditional Value at Risk
(CVaR) [4]. Intuitively, CVaR is the expected reward in the worst α-fraction of outcomes, and has
seen extensive use in financial portfolio optimization [5, 6], often under the name “expected shortfall.”
In this paper, we concern ourselves with quickly finding a policy with low CVaR-regret, defined as
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the cumulative difference across timesteps between the CVaR of the optimal arm and the average
CVaR of arms chosen by our algorithm.

One sample-efficient principle for exploration is optimism in the face of uncertainty (OFU) where
additional bonus terms are added to empirical estimates of the quantity of interest to promote
exploration. This principle can perform very well empirically but OFU approaches are known to not
adapt to a particular problem structure unless the bonus terms are explicitly designed to account for
such structure [7–9].

While existing OFU approaches for risk-sensitive bandits derive bonus terms as upper-confidence
bounds on the CVaR of the rewards [10], one might wonder whether tighter bonuses could be obtained
by taking the shape of the arm distribution into account. This may be especially relevant for an
objective like CVaR which is more sensitive to one side of the distribution than the other; for example,
if the distribution of observed samples is skewed towards the minimum observed reward, one might
be more confident in the corresponding CVaR estimate than if the samples were skewed in the other
direction.

Working towards this goal, we present a method that applies optimism directly at the sample level,
generating a new set of “optimistic samples" for each arm before computing the sample CVaR from
them. This process enables our algorithm to take the shape of the distribution into account, as opposed
to count-based reward bonuses added to the sample CVaR, which are agnostic to it. To construct these
optimistic samples, we use the Dvoretzky–Kiefer–Wolfowitz (DKW) concentration inequality [11],
which provides bounds on the true cumulative distribution function (CDF) given a set of sampled
outcomes. These bounds take the form of confidence bands around the empirical distribution function
(EDF), and we show how to modify our samples to match the optimistic band.

We will shortly illustrate how DKW allows us to both preserve strong theoretical guarantees and
enable better empirical performance by being more sensitive to the underlying CDF distribution,
compared to bounds that are agnostic to this shape. Empirically, we observe that our DKW approach
of bounding the CDF achieves an order of magnitude lower CVaR-regret than Cassel et al. [10]’s
approach which uses direct bonuses on the sample CVaR. These improvements on a variety of
simulated environments showcase the importance of distributionally-aware exploration for quickly
learning risk-sensitive policies.

2 Related Work

Much work on risk-aware multi-armed bandits [12–15] considers mean-variance objectives. We here
consider CVaR due to its advantage as a coherent risk measure [4]. Galichet et al. [16] consider a
CVaR-optimizing framework, but only analyze the case where α→ 0, which corresponds to finding
the arm distribution with the greatest essential infimum. In a pure exploration setting, Kolla et al.
[17] consider the task of finding the arm with the optimal CVaR with a successive rejects algorithm.

Outside the bandits framework, Brown [18] and Thomas and Learned-Miller [19] consider the
problem of quantifying the uncertainty of a CVaR estimate from a set of samples. Both present
concentration inequalities for CVaR, with the latter showing that the DKW inequality can provide
much tighter bounds in practice.

There has been very recent related work [10] for bandits with more general risk measures. However,
for learning CVaR bandit policies, their work relies on a more generic upper confidence bound that
works in the exploration bonus framework, whereas we apply optimism at the sample level.

3 Background and Notation

Let X be a bounded random variable with cumulative distribution function F (x) = P[X ≤ x]. The
conditional value at risk (CVaR) at level α ∈ (0, 1) of a random variable X is then defined as [20]:

CVaRα(X) := sup
ν

{
ν − 1

α
E[(ν −X)+]

}
We define the inverse CDF as F−1(u) = inf{x : F (x) ≥ u}. It is well known that when X has
a continuous distribution, CVaRα(X) = EX∼F [X|X ≤ F−1(α)] [21]. For ease of notation we
sometimes write CVaR as a function of the CDF F , CVaRα(F ).
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We consider a stochastic K-armed bandit setting with rewards contained in [0, U ]. Ti(n) is the
number of times arm i has been pulled up to round n; At is the action taken during round t; [m]
denotes the set {1, . . .m} for any m; and Pi is the PDF of the distribution of rewards from the ith
arm. Let (Xi,t)i∈[k],t∈[n] denote a collection of independent random variables (the samples of our
arms), with the pdf of Xit equal to Pi. Xt = XAt,TAt (t)

is the reward in round t. The empirical
distribution function of Xi,s is F̂i,t(x) = 1

t

∑t
s=1 I{Xi,s ≤ x}.

Here, we define the CVaR-regret at time n as

Rαn = nmax
i

(CVaRα(Fi))− E[

n∑
t=1

CVaRα(FAt)] = E

[
n∑
t=1

∆α
At

]
where Fa is the CDF of the distribution of rewards from the ath arm, At is the action taken at time t
and ∆α

a = maxj(CVaRα(Fj))− CVaRα(Fa) is the suboptimality of arm a with respect to CVaR.
We also consider an alternate notion of regret for the CVaR setting from Cassel et al. [10] in Section
5 and Appendix A.2.

4 Algorithm Algorithm 1: CVaR-UCB
Input: Risk level α, reward range U , horizon n

1 Choose each arm once;
2 Set F̂a as the CDFs of each arm a on [0, U ] for all

a ∈ [K];
3 Set Ta ← 1;
4 for t = 1, . . . , n do
5 for a = 1, . . . ,K do
6 εa ←

√
ln(2n2)

2Ta
;

7 F̃a(x)←
(
F̂a(x)− εi1{x ∈ [0, U)}

)+

;

8 UCBDKW
a (t)← CVaRα(F̃a);

9 Play action At = argmaxi UCBDKW
i (t);

10 TAt ← TAt + 1;
11 Update empirical CDF F̂At of arm At;

We present our algorithm, CVaR-UCB, in
Algorithm 1. CVaR-UCB computes an op-
timistic estimate of the CVaR of each arm
from available samples, and then chooses
the arm with the highest upper-confidence
bound in each turn. This optimistic estimate
is based on the concentration of the empir-
ical cumulative distribution function (CDF)
via the Dvoretzky-Kiefer-Wolfowitz [DKW;
11] inequality. DKW provides a deviation
bound on the maximum difference between
the empirical CDF and the true CDF as a
function of the number of samples observed.
We can use the DKW bound to compute an
optimistic estimate of the CVaR value of
an arm by computing the CVaR of the opti-
mistic confidence band around the CDF. This optimistic CVaR can be found very simply by shifting
the lowest-reward samples to the maximum reward U and then taking the empirical CVaR of the
resulting “optimistic samples". Figure 1a illustrates this process, both in terms of a confidence band
around CDF and in terms of generating an optimistic set of samples.

We now show that this simple method has strong regret bounds. To our knowledge this is the first time
that DKW-based optimism has been used in risk-sensitive RL or bandits. For proofs see Appendix A.

Theorem 1. Consider CVaR-UCB on a stochastic K-armed bandit problem with rewards bounded in
[0, U ]. For any given horizon n the expected CVaR-regret after this horizon is bounded as

Rαn ≤
∑

i∈[K]:∆α
i >0

4U2 ln(
√

2n)

α2∆α
i

+ 3

K∑
i=1

∆α
i ; Rαn ≤

4U

α

√
nK ln(

√
2n) + 3KU

Note that the bounds differ on their dependence on the number of samples n and risk level α:
the problem-dependent bound is O

(
U2 logn/α2

)
, while the problem-independent bound grows as

O (U
√
n/α). Observe that for α = 1, we recover (in dominant terms) the well known upper confidence

bound regret results for comparing to the arm with the best expected reward [22].

5 Comparison with Direct Bonuses on the CVaR

In our proposed approach we compute an optimistic estimate of the CDF and then extract a CVaR from
this optimistic estimate. In contrast, in standard bandit methods optimizing for expected outcomes,
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(a) Calculation of UCBDKW
i . Top-left: The empirical

CDF of arm i. Top-right: The lower DKW confi-
dence band (a shifted-down version of the empirical
CDF). Bottom-left: A histogram of samples from arm
i. Bottom-right: A histogram of samples optimisti-
cally perturbed to be close to the lower DKW band.
This is done by replacing the εi-fraction smallest sam-
ples with the maximum reward. The empirical CVaRα
of these new samples is UCBDKW

i .

(b) While our method shifts the lowest-reward samples
to the maximum value, direct bonuses on the sample
CVaR effectively shift all samples to the right equally.
For the uniform distribution (left), both have the same
effect, leading to an equivalent CVaR estimate (verti-
cal black line). However, for a Bernoulli distribution,
our method can leave the empirical CVaR estimate
unchanged while direct bonuses always result in a
looser estimate.

Figure 1: Illustration of our method (1a) and comparison with direct bonuses on the sample CVaR
(1b).

one simply adds a direct bonus to the mean to compute the upper-confidence bound. Therefore, a
natural alternative to our proposal, as introduced by Cassel et al. [10], is to directly compute the
empirical CDF, extract the empirical CVaR and then add a bonus based on the number of samples.
Procedurally this is equivalent to right-shifting each observed sample, in contrast to our algorithm in
which we use DKW to compute a lower bound on the empirical CDF, effectively shifting probability
mass from the lower-reward tail to the max reward.

Interestingly we will shortly observe that empirically there is a significant difference between these
two styles of approaches. In particular, our approach of first computing a bound on the empirical CDF
will yield a CVaR transformation that depends on the shape of the CDF itself. In contrast, adding a
bonus directly to the empirical CVaR is agnostic of the CDF structure, and relies only on the number
of samples observed. To gain some geometric intuition for the superiority of our method, consider a
distribution where the probability mass in the low-reward tail is clustered around a single point. In
this scenario, one would hope to estimate the CVaR quite quickly as the tail variance [23] is small,
and indeed the lowest α fraction of optimistic samples will be almost unchanged by our optimistic
perturbation. Figure 1b illustrates this by looking at the optimistic CVaR estimates generated for two
different distributions (for an empirical simulation, see Appendix B.4).

Cassel et al. [10] show that their U-UCB approach achieves a problem-dependent “proxy regret"
bound of order O

(
U2 logn/α2

)
which matches our bound above.1 Note however that their proxy

regret is potentially a slightly less standard notion of regret. While we show in Appendix A.2 that it
is an upper bound on our CVaR-regret, our CVaR-regret is amenable to a simpler analysis and is still
a good measure of the algorithm’s performance; e.g., to achieve sub-linear CVaR-regret the algorithm
needs to play the optimal arm more and more frequently. However, to rule out the possibility that our
algorithm’s superior performance is due to the use of a different objective, Proposition 2 shows that
CVaR-UCB achieves the same dependency on α and n as U-UCB, even when evaluating on proxy
regret.

We further illustrate the benefits of our approach over direct bonuses by devising a variant of U-
UCB with even better dependence on risk level α. This algorithm, Brown-UCB, leverages a CVaR
concentration inequality from Brown [18] to compute a bonus. We show in the Appendix A.1
that its problem-dependent CVaR-regret grows at O

(
U2 logn/α

)
. Similar to Thomas and Learned-

1To be exact, the proxy regret as presented in Cassel et al. [10] is not a cumulative notion, and thus the bound
is presented as O

(
U2 logn/α2n

)
, with an additional n present in the denominator. For clarity’s sake, we deal

with the cumulative version here.
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(a) Easy Bandit with α = 0.25 (b) Hard Bandit with α = 0.25 (c) Hard Bandit with α = 0.05

Figure 2: Cumulative CVaR-regret of CVaR-UCB (green; our algorithm), ε-greedy (purple), Cassel
et al. [10]’s U-UCB (orange), Brown-UCB Brown [18] (blue), and Kolla et al. [17]’s successive
rejects algorithm (red) for different bandit setups. While the arm bonuses in rightshifting algorithms
are only dependent on the number of samples gathered, the those in DKW-UCB depend further on
the particular values of those samples, leading to larger variance than the other algorithms. Means
and 95% confidence intervals shown for fifteen runs, with δ = 10−4. Y-axis has log scale.

Miller [19]’s observation in the concentration inequalities setting, we will soon see that while our
direct bonus approach has a slightly improved dependency on the risk level compared to the CVaR-
UCB above, the latter’s empirical advantages can be significant, highlighting the practical significance
of leveraging the specific CDF structure when computing a bonus.

Proposition 2. Consider a stochastic K-armed bandit problem with rewards bounded in [0, U ]. For
any given horizon n and risk level α, both CVaR-UCB and U-UCB incur proxy regret with O( logn

n )

and O(1/α2) dependency on the horizon and risk level, respectively.

6 Experiments

We present a series of experiments demonstrating the superior performance of our algorithm across
several types of distributions and numbers of arms. Details, when not stated, are deferred to Appendix
B.

6.1 Truncated Normal Environments

First, we present results on 3-armed truncated-normal bandits with varying risk levels and CVaR-
regret gaps. We compare our CVaR-UCB with four others: 1) an ε-greedy algorithm, which chooses
a random arm with probability ε = 0.1, and otherwise the arm with highest empirical CVaR; 2) the
CVaR best-arm identification algorithm from Kolla et al. [17]; 3) the U-UCB algorithm from Cassel
et al. [10]; and 4) a variant of U-UCB called Brown-UCB presented in Appendix A.1.

The results in Figure 2 show that the CVaR-regret of our algorithm is an order of magnitude lower
than the reward bonus-based algorithms we compared against (note the log-scale). Furthermore, as
expected, the cumulative-CVaR regret of our algorithm grows logarithmically, as expected. This is
in contrast to the linear growth of ε-greedy and Kolla et al. [17], which was not designed for regret
minimization.

6.2 Comparison against a Tuned ε-Greedy Baseline

In practice, the parameters used for ε-greedy can have a substantial impact on its performance. For
example, in the risk-neutral case, knowledge of the optimality gaps can be leveraged to create an
decaying ε-greedy algorithm with logarithmic regret growth [24]. Thus, to demonstrate the practical
relevance of our algorithm, it is important to check that finding a successful decay schedule for
ε-greedy is not easy. Thus, we introduce the Bernoulli Bandit environment, which is designed to
penalize algorithms which explore either too little or too much. In addition to comparing against our
algorithm, we also compare against the U-UCB algorithm from Cassel et al. [10]. The results of our
experiments are shown in Figure 3a, and show that all algorithms incur at least an order of magnitude
higher cumulative CVaR-regret than ours.
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(a) Cumulative CVaR-regret of our algorithm (green),
ε-greedy (blue), and Cassel et al. [10]’s U-UCB (red)
on the Bernoulli Bandit environment. The ε-greedy al-
gorithm was run with a wide range of starting epsilons
and decay constants. Results averaged over 15 runs.
Y-axis has log scale.

(b) Cumulative CVaR-regret of our algorithm on the
One Good Arm environment for different numbers
of arms. Values were collected after 3500 pulls and
averaged over 15 runs.

Figure 3: Cumulative CVaR-regret comparison on two additional environments.

6.3 Dependence on Number of Arms

We also performed an empirical evaluation of our algorithm’s dependence on number of arms K in
an environment called One Good Arm.

In Figure 3b, we plot the cumulative CVaR-regret of our algorithm and Cassel et al. [10]’s U-UCB
after 3500 pulls for various values of k. The empirical results show what our bound predicts:
the CVaR-regret grows linearly with number of arms K. Moreover, our algorithm continues to
significantly outperform U-UCB as the number of arms increases.

7 Conclusion

We present distributionally-aware optimism as a simple and effective way to reap the benefits of
optimism in risk-sensitive multi-armed bandits. We provide theoretical results matching state-of-
the-art and empirical results showing that our algorithm achieves an order-of-magnitude lower
CVaR-regret than exploration bonus-based alternatives and other baselines. In the future, we aim
to expand our analysis to contextual linear bandits, which capture the high-dimensionality and
individualized treatment desired in many applications, including healthcare.
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Appendices
A Proofs for multi-armed bandit setting

We consider a stochastic K-armed bandit setting with rewards contained in [0, U ]. Ti(n) is the
number of times arm i has been pulled up to round n; At is the action taken during round t; [m]
denotes the set {1, . . .m} for any m; and Fi is the CDF of the distribution of rewards from the
ith arm. Let (Xi,t)i∈[k],t∈[n] denote a collection of independent random variables (the samples
of our arms) drawn i.i.d. from Xi,t ∼ Fi. We denote by Xt = XAt,TAt (t)

the reward in round

t. The empirical distribution function of Xi,Ti(t) is F̂i,t(x) = 1
Ti(t)

∑Ti(t)
s=1 I{Xi,s ≤ x}. We use

∆α
i = maxj(CVaRα(Fj))− CVaRα(Fi) for the suboptimality of arm i with respect to CVaR risk

level α.
Lemma A.1. Let F be a CDF of a bounded non-negative random variable and ν ∈ R be arbitrary.
Then EF [(ν −X)+] =

∫ ν
0
F (y)dy. Hence, one can write the conditional value at risk of a variable

X ∼ F for any CDF F with F (0) = 0 as

CVaRα(F ) = sup
ν

{
1

α

∫ ν

0

(α− F (y))dy

}
.

Proof. We rewrite EF [(ν −X)+] as follows

EF [(ν −X)+] =EF [(ν −X)1{X ≤ ν}] = νF (ν)− EF [X1{X ≤ ν}]
1
=νF (ν)− EF

[
1{X ≤ ν}

∫ ∞
0

1{X > y}dy
]

2
=νF (ν)−

∫ ∞
0

PF [y < X ≤ ν] dy

=νF (ν)−
∫ ν

0

(F (ν)− F (y))dy =

∫ ν

0

F (y)dy

where 1 follows from a =
∫ a

0
dx =

∫∞
0

1{a > x}dx which holds for any a ≥ 0 and 2 uses
Tonelli’s theorem to exchange the two integrals. Plugging this identity into

ν − 1

α
EF [(ν −X)+] =

1

α

(
να−

∫ ν

0

F (y)dy

)
=

1

α

∫ ν

0

(α− F (y))dy

and taking the sup over ν gives the desired result.

Lemma A.2. Let F and G be the CDFs of two non-negative random variables and let νF , νG be a
maximizing value of ν in the definition of CVaRα(F ) and CVaRα(G) respectively. Then:

|CVaRα(F )− CVaRα(G)| ≤ 1

α

∫ max{F−1(α),G−1(α)}

0

|G(y)− F (y)|dy

≤max{F−1(α), G−1(α)}
α

sup
x
|F (x)−G(x)|

Proof. Assume w.l.o.g. that CVaRα(F )−CVaRα(G) ≥ 0. Denote by νF any maximizing value of
ν in the definition of CVaRα(F ). By Proposition 4.2 and Equation (4.9) in Acerbi and Tasche [21],
a possible value of νF is F−1(α). Then we can write the differences in CVaR as

CVaRα(F )− CVaRα(G) ≤νF − α−1EF [(νF −X)+]− (νF − α−1EG[(νF −X)+])

=
1

α
(EG[(νF −X)+]− EF [(νF −X)+]). (1)

Using Lemma A.1 in Equation (1) gives

CVaRα(F )− CVaRα(G) ≤ 1

α

(∫ νF

0

G(y)dy −
∫ νF

0

F (y)dy

)
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≤ 1

α

∫ νF

0

|G(y)− F (y)|dy ≤ νF
α

sup
y
|F (y)−G(y)|.

We can in full analogy upper-bound CVaRα(G)− CVaRα(F ) and arrive at the statement.

Lemma A.3. Let G and F be CDFs of non-negative random variables so that ∀x ≥ 0 : F (x) ≥
G(x). Then for any α ∈ [0, 1], we have CVaRα(F ) ≤ CVaRα(G).

Proof. Consider now the following difference

1

α

∫ ν

0

(α−G(y))dy − 1

α

∫ ν

0

(α− F (y))dy =
1

α

∫ ν

0

(F (y)−G(y))dy ≥ 0.

By Lemma A.1, we have that

CVaRα(G)− CVaRα(F )

= sup
ν

{
1

α

∫ ν

0

(α−G(y))dy

}
− sup

ν

{
1

α

∫ ν

0

(α− F (y))dy

}
.

Let νF denote a value of ν that achieves the supremum in 1
α

∫ ν
0

(α − F (y))dy (which exists by
Proposition 4.2 and Equation (4.9) in Acerbi and Tasche [21]). Then

CVaRα(G)− CVaRα(F ) ≥ 1

α

∫ νF

0

(α−G(y))dy − 1

α

∫ νF

0

(α− F (y))dy ≥ 0.

Lemma A.4 (Difference in CVaR). Let F be the CDF of a random variable bounded by [0, U ]

and F̂ be the empirical CDF obtained by n, i.i.d samples drawn from F . Let ε > 0 and G ={
supx |F (x)− F̂ (x)| ≤ ε

}
be the event that the empirical CDF is uniformly ε-close to the true CDF

F . Define F̃ (x) = 0 ∨ (F̂ (x)− ε1{x ∈ [0, U ]}). Then in event G the following inequality holds

|CVaRα(F )− CVaRα(F̃ )| ≤ 2F̃−1(α)ε

α
.

Proof. By Lemma A.2, the triangle-inequality and the definition of G and F̃

|CVaRα(F )− CVaRα(F̃ )| ≤ F̃
−1(α)

α
sup
x
|F (x)− F̃ (x)|

≤ F̃
−1(α)

α
sup
x
|F (x)− F̂ (x)|+ F̃−1(α)

α
sup
x
|F̂ (x)− F̃ (x)|

≤2F̃−1(α)ε

α
.

Lemma A.5 (Down-shift is optimistic for CVaR). Let F be the CDF of a random variable bounded
by [0, U ] and F̂ be the empirical CDF obtained by n, i.i.d samples drawn from F . Let ε > 0 and

G =
{

supx |F (x)− F̂ (x)| ≤ ε
}

be the event that the empirical CDF is uniformly ε-close to the true

CDF F . Define F̃ (x) = 0∨ (F̂ (x)− ε1{x ∈ [0, U ]}). Then in event G the following inequality holds

CVaRα(F ) ≤ CVaRα(F̃ )

Proof. By construction of F̃ , we have F̃ (x) ≤ F (x) for all x on G and hence the statement follows
by Lemma A.3.
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Theorem A.6 (DKW-UCB regret bound). Consider DKW-UCB on a stochastic k-armed bandit
problem with bounded rewards in range [0, U ]. For any horizon n, if δ = 1/n2 then the expected
CVaR-regret after the nth timestep is bounded by

Rαn ≤
K∑
i=1

4 ln(
√

2n)U2

α2∆α
i

+ 3

K∑
i=1

∆α
i

Additionally the CVaR-regret after the nth timsestep is also bounded by,

Rαn ≤ 4

√
nk ln(

√
2n)

U

α
+ 3

k∑
i

∆α
i

Proof. Our proof closely follows the proof of UCB from [25]. Let cαi denote the CVaR of arm i and
F̂i,t denote the empirical CDF of the ith arm before timestep t. Define c̃αi (t) as

c̃αi (t) = CVaRα(F̃i,t)

Where F̃i,t is defined as follows,

F̃i,t(x) =

(
F̂i,t −

√
ln(2/δ)

2Ti(t)
1{x ∈ [0, U ]}

)+

εi(t) =
U

α

√
2 ln(2/δ)

Ti(t)

First observe that CVaR decomposes as Rαn =
∑K
i=1 ∆α

i E[Ti(n)]. We want to bound E[Ti(n)] for
each suboptimal arm i. Without loss of generality we assume arm 1 is the optimal arm. Define the
"good event" Gi as:

Gi = {cα1 ≤ min
t∈[n]

c̃α1 (t)} ∩
⋃
i∈[K]

{c̃αi (ui) ≤ cα1 }

We chose ui ∈ [n] later. Following Lattimore and Szepesvári [25] we can show by contradiction that
if Gi then Ti(n) ≤ ui. First, since Ti(n) ≤ n we can write:

E[Ti(n)] = E[Ti(n)I{Gi}] + E[Ti(n)I{Gci}] ≤ ui + P(Gci )n (2)

Suppose Ti(n) > ui on event Gi, that means arm i was played more than ui times over n rounds and
so there must be a round t ∈ [n] where Ti(t− 1) = ui and At = i.

c̃αi = CVaRα

(
F̂i,t−1 −

√
ln(2/δ)

2Ti(t− 1)

)

= CVaRα

F̂i,ui −
√

ln(2/δ)

2ui


< cα1
< c̃α1 (t− 1)

Where the second line follows by Ti(t− 1) = ui and the third and the fourth follows by the definition
of event Gi. Hence At = arg maxj c̃

α
j 6= i, which is a contradiction, so when Gi occurs Ti(n) ≤ ui.

It is left to show the probably of the complement of the good event is low. Consider Gci

Gci = {cα1 > min
t∈[n]

c̃α1 (t)} ∪ {c̃αi (ui) > cα1 } (3)

and let us first consider the probability of the first part

P
(
cα1 > min

t∈[n]
c̃α1 (t)

)
= P (∃t ∈ [n] : cα1 > c̃α1 (t))
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and using optimism as shown in Lemma A.5 with ε =
√

ln(2/δ)
2T1(t) we can upper bound this probability

as

≤P

(
∃t ∈ [n] : sup

x
|F̂1,t(x)− F1(x)| >

√
ln(2/δ)

2T1(t)

)
and combining a union bound over the first n ≥ T1(t) samples of arm 1 with the Dvoretzky-Kiefer-
Wolfowitz inequality, we further bound this as

≤ nδ.
For the second term of the failure event in Equation (3), recall ∆α

i = cα1 − cαi , and we chose ui such
that ∆α

i ≥ εi(ui)
P(c̃αi (ui) > cα1 ) = P(c̃αi (ui)− cαi > ∆α

i ) ≤ P(c̃αi (ui)− cαi > εi(ui))

applying Lemma A.4 and let ti be the round at which arm i was observed the uith time

≤ P

sup
x
|F̂i,ti(x)− Fi(x)| >

√
ln(2/δ)

2ui

 ≤ δ
where the final bound follows from the Dvoretzky-Kiefer-Wolfowitz inequality. Hence, the probability
of the failure event is bounded as P(Gci ) ≤ (n+ 1)δ. Substituting this bound into (2):

E[Ti(n)] ≤ ui + n(n+ 1)δ (4)

It remains to determine ui which can be chosen as the first integer that satisfies ∆α
i ≥ εi(ui):

ui =

⌈
2 ln(2/δ)U2

α2∆α
i

2

⌉
Substituting into (4), and choosing δ = 1

n2 :

E[Ti(n)] ≤
⌈

2 log(2n2))U2

α2∆α
i

2

⌉
+ 2 ≤ 3 +

4 ln(
√

2n)U2

α2∆α
i

2

Substituting this into CVaR-regret decomposition, we get the desired bound

Rαn =

k∑
i=1

∆α
i E[Ti(n)] ≤

K∑
i=1

4 ln(
√

2n)U2

α2∆α
i

+ 3

K∑
i=1

∆α
i

One can also prove a sublinear regret bound that does not depend on the reciprocal of the gaps.

Rαn =

k∑
i=1

∆α
i E[Ti(n)] =

∑
i:∆α

i <∆

∆α
i E[Ti(n)] +

∑
i:∆α

i ≥∆

∆α
i E[Ti(n)]

≤ n∆ +
∑

i:∆α
i ≥∆

∆α
i E[Ti(n)]

≤ n∆ +
∑

i:∆α
i ≥∆

(
3∆α

i +
4 ln(
√

2n)U2

α2∆α
i

)

≤ n∆ +
4k ln(

√
2n)U2

α2∆
+

k∑
i=1

3∆α
i

≤ 4

√
nk ln(

√
2n)

U

α
+ 3

k∑
i=1

∆α
i

≤ 4
U

α

√
nk ln(

√
2n) + 3kU

Where the first inequality follows by
∑
i:∆α

i <∆ Ti(n) ≤ n, and the last line follows by choosing

∆ = U
α

√
4k ln(

√
2n)

n .
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Algorithm 2: Brown-UCB for MABs
Input: Risk level α, reward range U , max # of pulls n
Output: Series of actions A1, A2, . . . An.

1 Choose each arm once.
2 Initialize t = 1, Set δ = 1/n2.
3 for t = 1, . . . , n do
4 for i = 1, . . . , k do
5 UCBBrown

i (t) = CVaRα(F̂i,t) + U
√

5 log(3/δ)
αTi(t)

;

6 Play action At = argmaxi UCBαi (t);
7 Update empirical CDF of arm Ai;

A.1 Brown-UCB

The Brown-UCB algorithm presented in section 6 uses the upper confidence bound presented in
Brown [18]. Similar to Cassel et al. [10] we compute the empirical CVaR of each arm and add an
optimism bonus to build an upper confidence bound.

UCBBrown
i (t) = CVaRα(F̂i,t) + U

√
5 log(3/δ)

αTi(t)

we use δ = 1/n2. Algorithm 2 describes the algorithm.
Theorem A.7 (Brown-UCB regret bound). Consider Brown-UCB on a stochastic k-armed bandit
problem with bounded rewards in range [0, U ]. For any horizon n, if δ = 1/n2 then the expected
CVaR-regret after the nth timestep is bounded by

Rαn ≤
K∑
i=1

40 ln (
√

3n)U2

α∆α
i

+ 3

K∑
i=1

∆α
i

Additionally the CVaR-regret after the nth timsestep is also bounded by,

Rαn ≤ 4

√
10kn ln (

√
3n)

α
U + 3KU

Proof. Our proof style mimics theorem A.6. Let cαi denote the CVaR of arm i, and ĉαi (t) be the
empirical CVaR of the ith arm before timestep t. First, we observe that the CVaR-regret decomposes
as Rαn =

∑k
i=1 ∆α

i E[Ti(n)]. The general strategy we use is to bound E[Ti(n)] for each suboptimal
arm i. To do this, we define the “good” event

Gi = {cα1 < min
t∈[n]

UCBα1 (t)} ∩ {UCBαi (ui) < cα1 }

where ui ∈ [n] is a constant we will choose later. We need to show two things, first if Gi occurs, then
Ti(n) ≤ ui. Second, The complement event Gci occurs with low probability (governed by our future
choice of ui). Because Ti(n) ≤ n, we will have

E[Ti(n)] = E[I{Gi}Ti(n)] + E[I{Gci}Ti(n)] ≤ ui + P(Gci )n. (5)

For the case where Gi is true, we can show by contradiction that Ti(n) ≤ ui, similar to Lattimore
and Szepesvári [25]. The next step is to upper bound P(Gci ). By its definition,

Gci = {cα1 ≥ min
t∈[n]

UCBα1 (t)} ∪ {UCBαi (ui) ≥ cα1 }

12



The first set can be decomposed into a union of inequalities
⋃n
t=1{cα1 ≥ UCBα1 (t)}. We apply

the concentration inequality from Brown [18, Theorem 4.2]. Combining all probability bounds of
individual events with a union bound, we bound the probability of {cα1 ≥ mint∈[n] UCBα1 (t)} as nδ.

P
(
cα1 ≥ min

t∈[n]
UCBα1 (t)

)
≤ P

(
n⋃
t=1

{cα1 ≥ UCBα1 (t)}

)

≤
n∑
t=1

(
P(cα1 ≥ ĉα1 + U

√
5 ln(3/δ)

αt

)
≤ nδ

Since the second event is contained in {UCBαi (ui) ≥ cα1 } we can simply apply the Brown [18,
Corollary 3.1] concentration inequality to the second set as well. Assume that ui is chosen large

enough that ∆α
i − U

√
5 ln(3/δ)
αui

≥ c∆α
i :

P

ĉαi + U

√
5 ln(3/δ)

αui
≥ cα1

 = P

ĉαi − cαi ≥ ∆α
i − U

√
5 ln(3/δ)

αui


≤ P (ĉαi − cαi ≥ c∆α

i )

≤ exp

(
−2ui

α2(c∆α
i )2

U2

)
Substituting into (5), we obtain

E[Ti(n)] ≤ ui + n

(
nδ + exp

(
−2ui

α2(c∆α
i )2

U2

))
Choosing ui =

⌈
5U2 ln(3/δ)

α(1−c)2(∆α
i )2

⌉
and c = 1

2 then yields

E[Ti(n)] ≤ 40U2 ln(
√

3n)

α(∆α
i )2

+ 3

when combined with the CVaR-regret decomposition results in

Rαn =

k∑
i=1

∆α
i E[Ti(n)] ≤

K∑
i=1

40 ln(
√

3n)U2

α∆α
i

+ 3

K∑
i=1

∆α
i

To get a final result not dependent on each arm’s optimality gap, we decompose the CVaR-regret
further as

Rαn =
k∑
i=1

∆α
i E[Ti(n)]

=
∑

i:∆α
i <∆

∆α
i E[Ti(n)] +

∑
i:∆α

i ≥∆

∆α
i E[Ti(n)]

≤ n∆ +
∑

i:∆α
i ≥∆

(
3∆α

i +
40U2 ln(

√
3n)

α∆α
i

)

≤ 4

√
10kn ln(

√
3n)

α
U + 3

k∑
i=1

∆α
i

≤ 4

√
10kn ln(

√
3n)

α
U + 3KU

where the inequality follows because
∑
i:∆α

i <∆ Ti(n) ≤ n. Choosing ∆ =

√
40kU2 log(

√
3n)

nα and
simplifying produces the desired problem-independent bound.

13



A.2 Proxy Regret

Cassel et al. [10] introduced the notion of proxy regret for risk aware multi-arm bandits as:

R̄π(n) = CVaRα(Fp?)− E[CVaRα(Fπn )]

where p? = argmaxp∈∆K−1
CVaRα(Fp) where ∆K−1 is the K − 1 dimensional simplex:

∆K−1 =

{
p = (p1, . . . , pK) ∈ RK |

K∑
i=1

pi = 1, pi ≥ 0

}
and

Fp =

K∑
i=1

piFi

Fπn =
1

n

n∑
t=1

Fπt

Where F (i) is the distribution of arm i and πt is the policy at step t. Here we establish a formal
relation between this notion and CVaR-regret, defined in section 3.
Proposition A.8. CVaR is a convex function of the CDF. Concretely, if

∑
αi

= 1 and αi ≥ 0:

CVaRα

(∑
i

αiFi(x)

)
≤
∑
i

αi CVaRα(Fi(x))

Proof. Define the mixture distribution F̂ (x) =
∑
i αiFi(x):

CVaRα(
∑
i

αiFi(x)) =
1

α

∫ F̂−1(α)

0

(α−
∑
i

αiFi(x))dx =
1

α

∫ F̂−1(α)

0

∑
i

αi(α− Fi(x))dx

=
∑
i

αi
α

∫ F̂−1(α)

0

(α− Fi(x))dx

≤
∑
i

αi
α

∫ Fi
−1(α)

0

(α− Fi(x))dx =
∑
i

αi CVaRα(Fi(x))

Where the last inequality followed by the fact that
∫ y

0
(α− F (x))dx attains its maximum at F−1(y)

Proposition A.9. Consider a notion of proxy regret R̄π(n) defined in [10] as:

R̄π(n) = E[CVaRα(Fp?)− CVaRα(Fπn )]

The notion of regret Rαn defined in equation 3 satisfies the following inequality.

R̄π(n) ≥ 1

n
Rnα

Proof. First note that By the convexity of CVaR shown in proposition A.8 we have CVaRα(Fp?) =
CVaRα (Fi?) where i? = argmaxi CVaRα(Fi).

CVaRα(Fp?) = CVaRα

(
K∑
i=1

p?iFi

)

≤
K∑
i=1

p?i CVaRα (Fi)

≤ max
i

CVaRα (Fi)
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The bound is tight by setting p∗i? = 1 and p∗i = 0 : i 6= i?. Then by using the linearity of expectation
and the convexity of CVaR we have:

R̄π(n) = CVaRα(Fp?)− E[CVaRα(Fπn )]

= CVaRα (Fi?)− E[CVaRα(Fπn )]

= CVaRα (Fi?)− E[CVaRα

(
1

n

n∑
t=1

Fπ(t)

)
]

≥ CVaRα (Fi?)− 1

n
E[

n∑
t=1

CVaRα (Fπi)]

=
1

n

(
nCVaRα (Fi?)− E[

n∑
t=1

CVaRα Fπi)]

)
=

1

n
Rnα

This completes the proof.

Here we reiterate and prove the proposition 2.
Proposition A.10 (Proposition 2). Consider a stochastic K-armed bandit problem with rewards
bounded in [0, U ]. For any given horizon n and risk level α, both CVaR-UCB and U-UCB incur
proxy regret with O( logn

n ) and O(1/α2) dependency on the horizon and risk level, respectively.

Proof. First note that proxy regret decomposes as (Equation 15 in [10]):

R̄π ≤
L

n

∑
i 6=i?

E[Ti(n)]||Fi? − Fi||

Where i? = arg maxi CVaRα(Fi) is the optimal arm, and:

L = b

(
1 + max

i,j∈{1,...,K}
||Fi − Fj ||q−1

)
||F || = max{||F ||∞,

∫ 0

−∞
xdF}

For CVaRα, q = 2 and b = 1
α (1 + 3

min {α,1−α} ) (proposition 4 in Appendix E.2. [10]). Following
results from Theorem A.6, follows that for CVaR-UCB:

R̄π ≤
L

n

∑
i6=i?

(
3 +

4 log(
√

2n)

α2∆2
i

Ui

)
||Fi? − Fi||

The right hand side has O(1/α2) and O(log(n)/n) dependency on the risk level and horizon,
respectively.

Similarly for U-UCB we have (Theorem 2 in [10])

R̄U−UCB ≤
L

n

∑
i 6=i?

(
α′ log n

φ(∆i/2)
+
α′ + 6

α′ − 2

)
||Fi? − Fi||

For α′ ≥ 2. Where
φ(y) = min{a(

y

2b
)2, a(

y

2b
)2/q}

For CVaRα we have b ≤ 1
α and q = 2, which yields φ(∆i/2) ≤ aα2∆2

i . Hence the RHS has
O(1/α2) and O(log(n)/n) dependency on the risk level and horizon.

B Experimental Details

B.1 Three Arm Bandit Environments

In each distribution, the arms correspond to truncated normal distributions with different means and
variances. The parameters of these distributions, along with their CVaRs, are shown in Table 1. The
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Environment Arm 1 Arm 2 Arm 3
Easy, α = 0.25 3.18 9.32 -1.02
Hard, α = 0.25 6.59 9.32 6.91
Hard, α = 0.05 4.91 6.52 2.43

(a) CVaR values of different arms in our simulations. In
all cases, Arm 2 (bolded) has the highest CVaR.

Parameter Arm 1 Arm 2 Arm 3
Easy & Hard µ 10 15 16

Easy σ 6 5 15
Hard σ 3 5 8

(b) Means and standard deviations for each arm for the
Easy and Hard environments. All distributions were
truncated at ±1σ.

Table 1: Setup for the Three-Arm Multi-Arm Bandit Environments.

difference between the Easy and Hard environments is that the arms in the Hard environment feature
a smaller difference between their CVaR values compared to those in the Easy environment. We also
assess our algorithm’s performance on two runs of the Hard environment with different levels of α.
Note that we began each experiment by pulling each arm d1/αe times to ensure there are enough
samples so that the empirical CVaR is properly defined.

B.2 Bernoulli Environment

The environment consists of two arms: a deterministic arm that always returns 0.1 reward, and a
stochastic that returns reward 1 with probability 0.8 and returns 0 otherwise. The CVaR0.25 of the
stochastic arm is 0.2, compared to 0.1 for the deterministic arm. This environment highlights an
algorithm’s shortcomings in handling exploration: an suboptimal algorithm will either not explore
enough and settle for the inferior deterministic arm, or explore for too long and incur large CVaR-
regret.

We ran a decaying ε-greedy algorithm with a range of exponential decay constants spanning from
10−1 to 10−6 and initial epsilons ranging from 1 to 10−3. Results shown in Figure 3a.

Note that the successive rejects algorithm requires upper and lower bounds of the CVaR-regret gaps
between the optimal arm and all other arms. To ensure as favorable a comparison as possible, we
provide the tightest possible bounds based on the true CVaRs of the arms.

Dependence on Number of Arms The One Good Arm environment consists of one normal
distribution with mean 0 and variance 1 (CVaR0.25 ≈ −0.703), and the rest of the arms with mean
0.1 and standard deviation 10 (CVaR0.25 ≈ −6.928). Distributions were truncated at ±1σ.

B.3 Proxy Regret

In Figure 4, we show a comparison of DKW-UCB and Cassel et al. [10]’s U-UCB on the Bernoulli
Bandit environment, using Cassel et al. [10]’s notion of Proxy Regret. DKW-UCB achieves much
smaller proxy regret than U-UCB does. Note that unlike the CVaR-regret, Proxy Regret is a non-
cumulative notion.

B.4 Tightness of upper confidence bound

As described in section 5 DKW-UCB provides a problem dependent upper confidence bound that
empirically can be much tighter than the upper confidence bounds provided in Cassel et al. [10] and
Brown [18]. In this section we consider two different reward distributions as in the experiments:

• Bernoulli, with mean p = 1/2

• Truncated normal, mean µ = 0, standard deviation σ = 1, min value −2 and max value 2

Figure 5 shows the tightness of each bound based on the number of samples. The dashed line is the
true CVaR0.25 of each distribution, and the y-axis is the computed upper confidence bound of CVaR
with each different method, where DKW-UCB is our proposed method (shifting the empirical CDF
downward and compute the CVaR), Brown-UCB computes the empirical CDF and add a value based
on Brown [18] and similarly U-UCB is the bound presented in Cassel et al. [10]. DKW-UCB shows
a much tighter bound in both experiments. Additionally, Figure 5 (c) shows a zoomed version of the
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Figure 4: Proxy-Regret comparison between DKW-UCB and U-UCB on the Bernoulli Bandit
environment. Means and 95% confidence intervals plotted for 15 runs.
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Figure 5: (a) Truncated normal distribution, (b) Bernoulli distribution, (c) Bernoulli distribution, a
closer look

Bernoulli bound where the DKW-UCB upper confidence bound exactly matches the CVaR value
after around 60 samples.
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